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Origin
Masked Image Modeling (MIM)

| Reconstruct(inpaint) masked parts of given image
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Origin
Early work

| Context Encoders: Using autoencoders to inpaint a large, centered hole

Channel-wise
Fully
Connected

\ l :
A \\:
Encoder)
‘. L 4

[ Decoder Features ]

[ Encoder Features ]

(a) Input context (c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

[1] Context Encoders: Feature Learning by Inpainting, Pathak et al.



Origin
When transformers were invented... (MLM, BERT)
| BET: Direct application of BERT.

Image patches tokenized by DALL-E tokenizer, train BERT on those tokens.

When transformers got extended to images... (ViT)

MAE: VIT encoder + Masking + Decoder

Recent researches are more focused on MAE's, creating a LOT of variants!

Theoretical analysis on MAE has just begun.



Contents
MAE

| Masked Autoencoders Are Scalable Vision Learners (He et. al)
| SimMIM: a Simple Framework for Masked Image Modeling (Xie et. al)

MAE + X

MAE + Temporality (MAE-ST, VideoMAE, SiamMAE)
MAE + Control (MWM)

MWM + a (Seo et. al)

How does MAE work?

| Somewhat answered pragmatic questions

| Unanswered theorical questions



MAE (& SimMIM)

Self-supervised pretraining strategy

Random patch masking - ViT encoder - Unmasking - Transformer decoder - Prediction

Use encoder on downstream tasks (without masking, of course).

SiImMIM's only difference is that masked patches are also passed through encoder,
while MAE's encoder only gets non-masked patches.
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MAE (& SimMIM)

Great jOb' Good job!

original mask 75% mask 85% mask 95%

MAE SimMIM



MAE

MAE doesn’t need heavy, specific augmentations

| 50 epochs finetuning after MAE pretraining is better than
200 epochs from scratch with heavy augmentation (ImageNET)

case ft lin

none 84.0 65.7
crop, fixed size 84.7 73.1
crop, rand size 84.9 73.5
crop + color jit 84.3 71.9

(e) Data augmentation. Our MAE works with

minimal or no augmentation.

MAE benefits from longer training lengths

scratch, original [16]
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MAE

MAE benefits from high masking ratio (0.75)
Unlike words in sentences, pixels in images are mostly redundant.

Heavy mask ratio prevents MAE from copy-pasting (extrapolating) nearby pixels.

No special masking technique is required (random is enough).

s | [ fine tuning a4 8 _1 9 z_;i,{} 8 w 9 case ratio ft lin

S ~.845 random 75 849 735

AN block 50 839 723

o TS R AN block 75 828 63.9

f”x—% \83.0 grid 75 840 66.0
> 10 20 30 40 50 60 70 80 90 (f) Mask sampling. Random sampling works

masking ratio (%) the best. See Figure 6 for visualizations.



MAE

Decoder should be reasonably large, but not too large.

| Aligns with our intuition that later parts of a model learns task-specific features,
and earlier parts learn general ones.

| SimMIM also shows that a simple linear decoder works better than more complex ones.

blocks ft lin
1 84.8 65.5
2 84.9 70.0
4 84.9 71.9
8 84.9 73.5
12 84.4 73.3

(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar-
rower than the encoder (1024-d).

prove linear probing accuracy.

dim ft lin
128 84.9 69.1
256 84.8 71.3
512 84.9 73.5
768 84.4 73.1
1024 84.3 73.1

Head #params  Training costs  Top-1 acc (%)
Linear 89.9M 1x 82.8
2-layer MLP 90.9M 1.2x 82.8
inverse Swin-T | 115.2M 1.7x 82.4
inverse Swin-B | 174.8M 2.3x 82.5

Table 2. Ablation on different prediction heads. A simple linear
layer performs the best with lower training costs.

SimMIM



MAE

Giving mask tokens to encoder is BAD.

1. Doesn't align with downstream performance - mask tokens are never seen there!
2. Encoder pretraining becomes much heavier (4x more tokens)

Uh-oh moment for SimMIM

encoder dec. depth  ft acc hours  speedup
case ft lin FLOPs VIT-L 8 849 154  2.8x
encoder w/ [M] 84.2  59.6 3.3X ViT-L 1 84.8 1.6 3.7x
encoder w/o [M] 84.9 73.5 1x

ViT-H 8 85.8 34.5 3.5X%

ViT-H 1 85.9 29.3 4.1x



MAE + Temporality

How can we train MAEs on videos?

Videos not only have even more pixel redundancy, but also adds temporal redundancy.
MAE-ST: Just use higher mask ratio (0.9).
VideoMAE: Higher mask ratio(0.9) + Tube masking + Spatio-temporal position embedding

T P W Se TOE W
(a) agnostic, 90%  (b) space-only, 90%  (c) time-only, 75% (d) block, 75%
(random) (tube) (frame)

[2] Masked Autoencoders As Spatiotemporal Learners, Feichtenhofer et. Al
[3] VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training, Tong et. al



MAE + Temporality

Results
| Two disagree on which masking strategy is better but agree on using 0.9 mask ratio.

| Other results consistent with those from Image MAE (just extended to video datasets).
e.g., pretrain length, decoder 4-layer-512-width, minimal augmentation

MAE-ST VideoMAE
case ratio  acc. case ratio SSV2 K400
(random) agnostic 90 84.4 tube 75 68.0 79.8
(frame) space-only 90 83.5 tube 90 69.6 80.0
(tube) time-only 75 79.1 random 90 683 79.5
block 75 83.2 frame 87.5° 61.5 76.5

(a) Mask sampling. See also Fig. 4. (b) Mask sampling. We com-
Random sampling that is spacetime- pare different masking strate-

agnostic works the best. gies. Our proposed tube mask-
ing with an extremely high ratio

works the best. % *87.5"" means
masking 14/16 frames.



MAE + Temporality

Results

| MAE-ST got better performance overall.

dataset training data from scratch MoCo v3 VideoMAE
K400 240k 68.8 74.2 80.0
Sth-Sth V2 169k 32.6 54.2 69.6
UCF101 9.5k 514 81.7 91.3
HMDBS5]1 3.5k 18.0 39.2 62.6
=, i scraich  MAE

I

|
- 1-view 60.7 73.4(+127) MAE-ST
n / - multi-view 714 844 (+13.0) (on Kinetic-400)
%201

|

|
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MAE + Temporality

SiamMAE: Learning future predictive representation using MAE

Use Siamese architecture to learn to propagate information through time!

No masking on current frame, extremely heavy masking (0.95) on future frame.

To reconstruct future frame, the masked tokens(query) must use current frame's
information(key, value) at decoder stage.
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[4] Siamese Masked Autoencoders, Gupta et. al



MAE + Temporality

Results

, ‘i E IF” S
L -

Masked Future Frames
Figure 2: Visualizations on the Kinetics-400 [93] validation set (masking ratio 90%). For each video
sequence, we sample a clip of 8 frames with a frame gap of 4 and show the original video (top),
SiamMAE output (middle), and masked future frames (bottom). Reconstructions are shown with f;
as the first frame of the video clip and f2 as the remaining frames, using a SiamMAE pre-trained
ViT-S/8 encoder with a masking ratio of 95%.




MAE + Control (MWM)

Learning a world model using MAE's latent space

| DreamerV?2, but the representation model(and reward model) is learned via MAE

| Interestingly, masking is performed CNN outputs. Each token is no longer limited
to a patch but contains all information of its receptive field.
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[5] Masked World Models for Visual Control, Seo et. al



Our Implementation
MWM on Atari

Learned to reconstruct only (no world model).

Fails on small, random objects.

Intuitively, it's almost impossible to reconstruct
a tiny object that's completely masked out.

| Empirically, MWM performs better than CURL on
games with large objects, but deteriorates when
objects get smaller.

Reconstruction

Target




Our Implementation

. . Current Frame Future Frame(Target) Reconstruction
SiamMAE on Atari
]

| Implemented in ‘MWM style’
(i.e., CNN output masking)

| Somewhat cherry-picked :)




MWM + Multi-View

Multi-View Data Multi-View Masked Autoencoders Visual Robotic Manipulation
Multiple Cameras View-Masking Video Autoencoding Multi-View Control  Single-View Control
0y 4
Viewpoint Randomization -; Decoder Viewpoint-Robust Control

Encoder
Transfer 1

1 .
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s

[6] Multi-View Masked World Models for Visual Robotic Manipulation, Seo et. al



MWM + Multi-Modality

Image Tactile Force Maps

No Masking l

Masking

ViT Encoder

ViT Encoder A

A ViT Decoder
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[7] The Power of the Senses: Generalizable Manipulation from Vision and Touch through Masked Multimodal Learning, Sferrazza, Seo et. al



Empirical Takeaways
Why should | consider using MAE?

| Effective, efficient, requires minimal augmentation.
| Transformer architecture allows easy extension to multi-modality.

Which masking strategy should | use?

| Random.
| If temporality is involved, consider tube masking.

What masking ratio should | use?
| Start with 0.75 for images, 0.9 if temporality is involved.

How big should encoder/decoder be?

| Encoder: Larger the better (tradeoff).
| Decoder: Reasonably large, but not too large (4 layer, 512 width transformer).



Why Does MAE Work?

Theoretical works on MAE have just begun

Some try to understand MAE via hierarchical latent variable models.

Others try to connect MAE with contrastive learning.

One of which is by Zhang et. al, which states that there's an
implicit contrastive loss that lower-bounds MAE loss.

| Take this with a grain of salt, though.

[9] Understanding Masked Autoencoders via Hierarchical Latent Variable Models, Kong et. al
[10] Understanding Masked Autoencoders From a Local Contrastive Perspective, Yue et. al
[11] How Mask Matters: Towards Theoretical Understandings of Masked Autoencoders, Zhang et. al



Why Does MAE Work?

“MAE implicitly creates an augmentation graph on masked images”

Start by creating a bipartite graph between masked & unmasked images
Step 1. MAE loss is lower-bounded by the masked-unmasked alignment loss.

Gross simplification: L2 loss is lower-bounded by dot product loss.

Interpretation: MAE is aligning network output with its unmasked target.

Theorem 3.2. Under Assumption 3.1, the MAE loss can be lower bounded by
£MAE(h) 2 ['as,\'m(h) =g C()I’ZSI, (3)
and Lgm(h) = —Egy o, h(x1) " hg(z2) = — tr(H, Ay H), (4)



Why Does MAE Work?

“MAE implicitly creates an augmentation graph on masked images”

| Two masked images that have the same unmasked target should also get closer.
This should occur a lot more as masking ratio increases.

| We can think this pair as the two views of some (unknown) augmentation function,
on which we apply contrastive alignment loss.

| Also note that any augmentation function induces a graph among input images, of which
two nodes are connected when they can be two views of that augmentation function,

Mask Graph Augmentation Graph
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Why Does MAE Work?

“MAE implicitly creates an augmentation graph on masked images”

| Step 2. The masked-unmasked alignment loss is lower-bounded by the
alignment loss on the implicit augmentation graph.

Theorem 3.3. The asymmetric alignment loss on the mask graph (Egq. (4)) can be lower bounded by
the symmetric alignment loss on the augmentation graph (Eq. (5)):

1
ﬁas_wn(h) 2 iﬂcaﬁgn (h) + const. (6)

| Step-3-Have a debate with the author on GitHub.



Why Does MAE Work?

Can two inputs share the same target in the first place?
Two masked images sharing the exact same target?

Extreme cases: No masking & All masking

My interpretation (verified by silence):
If two masked images are from the same class, their targets are likely to
be semantically similar, and that (hopefully) still creates implicit connections.
This makes their argument weaker, which leads to next concern.

Is the lower-bound meaningfully tight?

| Unanswered (according to area chair)



Why Does MAE Work?

Theoretically explaining why mask ratio matters
| Based on this, authors provide a theoretical guarantee on downstream classification.

| This can be summarized into: “Mask ratio should be high enough to create enough
Intra-class connections, but not too much to create inter-class connections.”

Theorem 4.1. Denote the mask-induced label error as o = Ez , 1[y(x1) # y(Z)|. Then, for

YV h € H (the hypothesis class) with h = g o f, the downstream classification error of its encoder can
be upper bounded by its U-MAE pretraining loss:

Pr(y # pr(z)) < erl - Lymae(h) + coa + e3Le + ¢y, (14)

where ¢, . .., cq are constants and c3 > 1.

Theorem 4.2. The U-MAE pretraining loss has the following common lower bound:

Ny

1
VheH, Lymae(h)> EZ A? — & + const, (15)
i=k+1
where \{ > - -+ > Ay, denote the eigenvalues of A.



Why Does MAE Work?

The sweet spot of mask ratio
We can roughly measure inter/intra class connectivity via the relative L2 distance.

Intuitively, we want low inter-class distance and high intra-class distance.

On ImageNet, relative L2 distance hits minimum around 0.75!

=
= er-class &

o 0892
95 T

£ 0.880
@ =
g 90 a

3 o 0,588
© s &

< = p,886
o
o
= 0.884
o

75 o
0.2 0.4 0.5 0.8 1.0 = 0.z 0.4 06 0.8 1.0
Mask Ratio Mask Ratio

(b) The distance between (c) The relative distance be-
intra-class and inter-class tween intra-class samples
samples and inter-class samples



Fin



	슬라이드 1: Masked AutoEncoders
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30

