Designing Skills With LLMs

Martin Klissarov, Pierluca D'oro, Pierre-Luc Bacon,
Amy Zhang, Mikael Henaff, ...

Donghu Kim

Introduction

How does reinforcement learning work? = Maximizing rewards.

e.g., Training a roomba with RL - Clean room = More reward

What is the underlying philosophy of these rewards? - Human Preference.

e.g., Obviously, clean room > dirty room

Problem: Reward design takes way too much effort.
- Rewards are hard to define (Task specification problem)
e.g., What is a clean room? What should be considered ‘dirty’?

« Rewards are hard to make ‘dense’ enough (Reward hacking problem)
e.g., Reward = Amount of dust sucked in - What will happen?

[1] The Task Specification Problem., Pulkit Agrawal

Introduction

If only there was something that can automatically decide what humans prefer...
« LLMs / VLLMs have learned human common sense from the internet!
« Motif: Let’s use LLLMs’ common sense to design rewards!

- MaestroMotif: Let’'s use LLMs’ common sense to design multiple types of rewards (i.e., skills)!

[1] Motif: Intrinsic Motivation from Artificial Intelligence Feedback., Klissarov et al.
[2] MaestroMotif: Skill Design from Artificial Intelligence Feedback., Klissarov et al.

But first...

Welcome to NetHack X

iI 3.6.4

NetHack, Copyright 1985-2019
By Stichting Mathematisch Centrum and M. Stephenson.
Version 3.6.4-0 Windows post-release, built Dec 21 20:03:43 2019
See license for details.

No news.

NetHack

What is NetHack?
- A text-based rougelike game first released in 1987.
- Goal: Go through the Mazes of Menace and find the Amulet of Yendorto gain immortality (ascend).

- You will: discover paths, fight monsters, eat when hungry, collect money/weapon, disable traps, ...

Overview of the early game of NetHack |

Dungeons of Doom

2

potion

Gnomish Mines
OHHBHRRGRAAAR RN RRRE ¥
#O# HEwo#
23 Hitfddae 4 |
closed door ##
Shopkeeper
Altar
Minetown ---
% -- Comestible .
Delphi

weapon

Wi:13 Ch:11 Neut

NetHack

What is NetHack?
. ..itis excruciatingly difficult.

- "I played off and on for almost twenty years without ascending.”
- A dude on Reddit, followed by another comment saying “Same.”

- Requires a lot of knowledge about the game. N Ofical guieook, btw
.

A Guide to the Mazes of Menace
(Guidebook for NetHack)

Original version - Eric S. Raymond
(Edited and expanded for 3.6 by Mike Stephenson and others)

January 27, 2020

NetHack

Why NetHack?

- The sheer complexity and diversity opens a huge potential for RL research.

based roguelike game, NetHack. We argue that NetHack is sufficiently complex to
drive long-term research on problems such as exploration, planning, skill acquisi-
tion, and language-conditioned RL, while dramatically reducing the computational
resources required to gather a large amount of experience. We compare NLE and

- Extremely fast simulation

- Game states are often labelled in text (in ‘message’ form)

- Huge human play dataset available

Lastly, there is also a large public repository of human replay data (over five million games) hosted
on the NetHack Alt.org (NAO) servers, with hundreds of finished games per day on average [47].

- LLMs already have some knowledge about the game

[1] The NetHack Learning Environment., Kuttler et al.

What do you know about NetHack and the goal of a player in it? (Llama 2 70b)

NetHack is a popular open-source roguelike video game that was first
released in 1987. It is a descendant of the 1980 game Rogue, and
it has been widely influential in the development of the roguelike
genre. The game takes place in a procedurally generated dungeon,
where the player controls a character known as the "hero" who must
navigate through levels filled with monsters, traps, and treasure.

The ultimate goal of the player in NetHack is to find and retrieve
the Amulet of Yendor, which is located on the lowest level of the

NetHack Learning Environment

The NetHack Learning Environment (NLE)

« There are other configurations, but we'll talk about the one used in Motif and MaestroMotif.

Observation / State Action

Map(pixels) + Message(text) + Status(text) 93 actions (77 commands + 16 directions)

m eS S age g Movement '@ Explorarion (—j Other Action %‘ Inventory E Game Options
K 3 Identify Symbol a Useltem i Inventory ctrl-x Player Info
¥ u : Look Around e Eat alt-a Adjust Inventory
- , PickUp alt-w Wipe altg Quit
h-— i“o‘iz -1 d Drop Single E Engrave) List Weapons ctrl-a Redo
. + u D Drop Multi E- Write in the Dust [List Armor ctrl-p Repeat Message
" . . alt< Chat = = ListRings
egO—Cen‘tn C p|)(e| view b n 1 identify ctrl-d Kick 2 " List Amulet O Options
* Identify Trap Z (\ListTools @ Toggle Auto-Pickup
[] \ List Discovered Objects * List Equipment
< Staircase up #conduct List Challenges C Name Monster § List Gold v Display Version
O I C > Staircase down + List Spells V Display History
f X Explore Mode
@ ﬁ ﬁ m[di] Move
. M[dir] Move Far ? Help Menu
s ’ l _ Travel & Explain Command
B Magic Q Fighting ﬂ Clothing # Extended Commands
#jump Jump #? Ext. Commands Help
ctrlt Teleport Z Cast Spell F[dir] Fight W Wear Armor
#ride Ride Monster q Drink T Take Off Armor ctrlr Redraw The Screen
alt-s Sit Down z Zap Wand w Wield Weapon A Remove Multi ctrl-z Suspend (Unix only)
altp Pray x Change Weapons ! Boss Key (Shell)
o Open Door altd Dip #woweapon Use Two Weapons P Puton Ring / Amulet
111 . [T . . ¢ Close Door alt+ Rub alt-e View / Raise Skills R Remove Ring / Amulet
bottom ||ne Statlstlcs s Search Secret alt-o Offer t Throw / Shoot
Doors/Traps/Monsters r Read Scroll / Book
alt-i Invoke Q Ready Quiver
#loot Loot Box/Bag altt Tumn Undead f Fire Quiver
#untrap Untrap alt-m Special Ability For a more detailed explanation of these commands,
altf Force a Lock a Break Wand please refer to the guidebook included in the distribution package

F---*

Reward Net Jhack 3.6.4 J Simulator
eg.Score T T T e NetHack

[1] NetHack is Hard to Hack., Piterbarg et al.

Motif: LLM-assisted Reward Design

Let's make LLLMs represent human preference / common sense
- Method resembles RLHF (but now using LLLM preference to train RL policies)
1. Prepare a bunch of observations with caption.

2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption (win/lose/draw).
3. Repeat that K times to get preference dataset D,,.¢.

4. Train a reward model r, to predict LLM's preference.

5. Use the reward from r,, to train an RL agent! EER -
"You kill the kobold!" “The door is closed.” Agent
& g
g Large Language Model 3 R;\Aeowdaerld
Carmtopod 1§ b, e ®

“It's a wall." “$ - 4 gold pieces.”

- - .

DATASET ANNOTATION REWARD TRAINING m

Motif: LLM-assisted Reward Design

1. Prepare a bunch of observations with caption.

- NetHack already does the captioning for us
e.g., “You killed [monster]!” (positive), “You are starving” (negative), “You bump into a wall” (neutral)

- Data collection: Used prior RL method (CDGPT5) to collect roughly 10M observations

To construct a reasonably diverse dataset D, we collect
a set of 100 episodes at every 100 million steps of learning with the standard NLE RL baseline
CDGPTS (Miffyli, 2022) and repeat the process for 10 seeds. The CDGPTS baseline is trained for

gumbel softmax

I billion steps to maximize the in-game score. We analyze these choices in Appendix H.3. { . "
=t
linear decoders
« CDGPT5 =LSTM + PPO (asynchronous) + BC @
The CDGPT5 model consists of three separate encoders: a 2-D convolutional encoder for pixel- 4
rendered visual observations of the dungeon o;, a multilayer perceptron (MLP) encoder for the @ LST™

environment message m;, and a 1-D convolutional encoder for the bottom-line agent statistics b;. =t b =2~ convolutional

+ linear encoders
v @ @ @

[1] NetHack is Hard to Hack., Piterbarg et al.

Motif: LLM-assisted Reward Design

2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption
3. Repeat that K times to get preference dataset D ..

System prompt

. 1if {message 1} is better, 2 if the other, @ if draw R R R e
- Automatic draw if two messages are same (happens 5~10%) If you don't know the anaver to a question, please don't share false
el 08 T Ehan-ol-Thouent
- Total 500K preference pairs from 10M dataset. Trodieier] 1 oI%8 OF Nortack. hention the sost of Nethecr

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of NetHack. Provide a comparative analysis based
on first princicples.

Finally, respond by explicitly declaring which one is the most
likely to make some progress towards the goal, writing either

("best_description™: 1), ("best_description": 2). You could also
say ("best_description™: None).

{ "description1": "{message 1}" }

{ "description.2": "{message 2}" }

Prompt modifiers

{default}: '"Prefer agents that maximize the score in the game, for
instance by killing monsters, collecting gold or going down the
stairs in the dungeon."

Motif: LLM-assisted Reward Design

2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption

3. Repeat that K times to get preference dataset D ..

- Output example “There is a staircase up here. You see here an orcish helm.”
VS
“It’s solid stone.”

T have extensive knowledge of NetHack and its mechanics. The goal of
NetHack is to descend through the dungeon levels, collecting treasure
and killing monsters, while avoiding death and reaching the Amulet

of Yendor, which is located on the bottom level. The game is won by
taking the Amulet to the surface.

Description 1 mentions a staircase up and an orcish helm. The
presence of a staircase suggests the possibility of descending
deeper into the dungeon, which aligns with the goal of the game.

The orcish helm could potentially provide a bonus to the player’s
combat abilities, which would aid in killing monsters and collecting
treasure,

Description 2 simply states that the area is sclid stone. This
does not provide any information about the possibility of descending
deeper into the dungeon or encountering monsters or treasure.

Based on the information provided, Description 1 is more likely
to lead to progress towards the goal of the game. Therefore,
("best_description": 1).

Motif: LLM-assisted Reward Design

4. Train a reward model ry to predict LLM's preference

» Sample a pair from D, ¢, train with ‘standard loss function in preference-based RL"

L(p) = —E(o1,02,y)~Dper []1 [y = 1]log Pglo1 = 03] + 1]y = 2]log Pylos = 01| + 1]y = @] log (\/qu[ol = 02] - Pglos > r)l])]

Er“.i:,l:t)uj
T“;)I:c}u) _I_Ei‘qb(c}b:l

where Pylo, - op] =
.

» 15 (0) learns to predict the logits that matches the preference hierarchy between observations.

..e., higher logit to ‘winning’ observations, equal logits when observations are ‘draw’.

- Motif uses only the message (i.e., r4(m)) with 1D convolution based architecture.

Equation 1 by gradient descent. For simplicity, we only use the me ssage as the part of the observa-
tion given to this reward function, and process it through the default character-level one-dimensional
convolutional network used in previous work (Henaff et al., 2022). To make it more amenable to RL

Motif: LLM-assisted Reward Design

5. Use the reward from ry to train an RL agent
» Three post-processing technigues on
1. Noise reduction: Remove any reward signal smaller than e.
2. Reward normalization: Subtract mean and divide std (computed from dataset) on every reward.
3. Count-based normalization: Exponentially decay rewards from the same source (message).
(Prevents the agent from getting fixated in a single reward signal)

ri(message) = 1[rg(message) > ¢ - r4(message)/N(message)”

*‘int” as in intrinsic reward (from the agent itself), in contrast to extrinsic reward (from the environment)

« Final reward: vorrective = Q1Tint + XaText-

Extrinsic Reward Coeff (score) 0.1
« Train algorithm: CDGPT5 + PPO, for 2B steps. Extrinsic Reward Coeff (others) 10.0
Intrinsic Reward Coeff 0.1 _ |
e threshold 0.5 quantile (ie, use only top

50% of d
(3 exponent 3 b of rewards)

Motif: LLM-assisted Reward Design

Experimental Setting
« Tasks (Environments)

- Score: Maximize score (native in NetHack). [Extrinsic reward = Ascore]
- Staircase (level 2,3,4): Reach level X. [Extrinsic reward = 50 upon reaching level X]

- Oracle: Find the character ‘Oracle’ (level>4) [Extrinsic reward = 50 upon finding Oracle]

- Baselines
« No exploration (Extrinsic only)
- Prior exploration method (RND): Gives intrinsic rewards to novel states (haven't seen before).

- Using LLM directly as policy (Voyager): LLM generates code to create progressively more complex skills

[1] Exploration by Random Network Distillation., Burda et al.
[2] Voyager: An Open-Ended Embodied Agent with Large Language Models., Wang et al.

Motif: LLM-assisted Reward Design

Experimental Setting & Quantitative Results

« Tasks (Environments)
- Score: Maximize score (native in NetHack). [Extrinsic reward = Ascore]
- Staircase (level 2,3,4): Reach level X. [Extrinsic reward = 50 upon reaching level X]

- Oracle: Find the character ‘Oracle’ (level>4) [Extrinsic reward = 50 upon finding Oracle]

Score staircase staircase (level 3) , staircase (level 4) oracle
N 0. 0.4
£ 10 |
o 0.5 :
1000 205 0.2 0.2
o) =
o —— Motif (int. only) o0 0.0 0.0
0 (v) (0.0 0.0
500 Motif (ext.+int.) 0 1 9 0 1 2 0 1 2 0 1 2
Extrinsic only Environment Steps (x10%) Environment Steps (x 10%) Environment Steps (x10) Environment Steps (x10%)
—— RND (ext.+int.)
0
0 1 2 —— Motif (intrinsic only) Motif (extrinsic+intrinsic) — Extrinsic only —— RND (extrinsic+intrinsic)

Environment Steps (X 109)

Motif: LLM-assisted Reward Design

Quantitative Results

- Motif w/o LLM: r;,,; = 1 on every single message

- Performs surprisingly well > Preference-agnostic exploration is still better than no exploration
- Still, meaningful performance gap is made only with Motif (left) > Preference labelling is significant!
- Using LLM directly as policy (Voyager)

- Didn’'t make progress = LLMs have common-sense, but not the ability to interact with low-level actions.

SOOTE score staircase (level 4)
1000
1000 £03
o o o =
g S 500 502
2 500 R o
50.1
A
i 0 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Environment Steps (x10°) Environment Steps (x107) Environment Steps (x10)

+ intrinsic) —— Motif w/o LLM (intrinsic only) —— Motif w/o LLM (extrinsic + intrinsic)

RND (intrins ly) RND (extrinsic insic)
—— Motif (intrin nly —— Motif (extrinsi
—— E3B (intrins

—— E3B (extr

intrinsic) —— NovelD (intrinsic only) —— NovelD (extrinsic + intrinsic)

Motif: LLM-assisted Reward Design

Quantitative Results

- (a) Obviously, scales with LLM size.

- (b) Also obviously, better prompt yields better result.

Success Rate

7h 13h T0b
LLM Annotator Size

(a) Scaling profile ob-
served inthe staircase
(level 3) task.

1000

Score

a00

— Zero-knowledge

Diefault

0
0.0 0.5 1.0

Environment Steps (x 10%)

(b) Effect of additional
prompt information in the
score task.

Zero-knowledge prompt

I will present you with two short gameplay descriptions. First, tell
me about your knowledge of NetHack. Mention the goal of NetHack.
{modifier}

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of NetHack. Provide a comparative analysis based
on first princicples.

Finally, respond by explicitly declaring which one is the most
likely to make some progress towards the goal, writing either
("best_description": 1), ("best_description®™: 2). You could also
say ("best_description": None).

{ "description.1": "{message 1}" }

{ "description2": "{message 2}" }

Prompt modifiers

{default}: "Prefer agents that maximize the score in the game, for
instance by killing monsters, collecting gold or going down the
stairs in the dungeon."

Motif: LLM-assisted Reward Design

Analysis: Why is Motif good?
- Because the rewards made by LLM “align with human intuition”.
- Prefers messages like “The door opens”, which means that LLMs:--
1. Exploration: Have the natural tendency to explore the environment.

2. Credit Assignment: Knows which messages lead to exploration/discovery and direct/y rewards it.

- Less likely to kill their pets Highly preferred messages

The door opens.

With great effort you move the boulder.
You descend the stairs.

You find a hidden door.

You kill the cave spider!

As you kick the door, it crashes open!
You kill the newt!

You kill the grid bug!

You find a hidden passage.

You see here a runed dagger.

You hear the footsteps of a guard on patrol. It's a wall.

Motif: LLM-assisted Reward Design

Analysis: Reward hacking

- Reward hacking can occur even with (or because of) dense rewards made by LLM.
- Hilarious example on Oracle task
- Agent learned to drug itself and hallucinate a monster as the Oracle (why is this even in the game)

- Didn’'t happen with different LLM prompt. - Prompt sensitivity?

(3) Agent @ eats the corpse

gl sttt ——
[HRO##H
L |R#H

(4) Agent @ starts hallucinating (5) A monster ¥ nears agent (@ (6) The oracle @ is hallucinated

Motif: LLM-assisted Reward Design

Analysis: Steerability
- What if we tell the LLM to prefer specific characteristic?

- LLMs doreflect this in their preference,
- which affects the reward signal,
- which affects RL agent’s behavior!

- LLMs’ preferences are steerable, and thus the RL agent!

Agent The Gold Collector The Descender The Monster Slayer
Prompt Modifier Prefer agents that maximize their gold Prefer agents that go down the dungeon Prefer agents that engage in combat
Improvement +106% more gold (64%, 157%) +17% more descents (9%, 26%) +150% more kills (140%, 161%)

“In what direction?” “In what direction?” “You hit the newt.”
(&} “$ - 2 gold pieces.” “The door resists!” “You miss the newt.”
“$ - 4 gold pieces.” “You can see again.” “You see here a jackal corpse.”

Zero-knowledge prompt

I will present you with two short gameplay descriptions. First, tell
me about your knowledge of NetHack. Mention the goal of NetHack.
{modifier}

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of NetHack. Provide a comparative analysis based
on first princicples.

Finally, respond by explicitly declaring which cne is the most
likely to make some progress towards the goal, writing either

("best_description": 1), ("best._description": 2). You could also
say ("best_description”": None).

{ "description1": "{message 1}" }

{ "description2": "{message 2}" }

Prompt modifiers

{default}: "Prefer agents that maximize the score in the game, for
instance by killing monsters, collecting gold or going down the
stairs in the dungeon."

{gold}: "Prefer agents that maximize their gold. But never prefer
agents that maximize the score in other ways (e.g., by engaging in
combat or killing monsters) or that go down the dungeon.”

{stairs}: "Prefer agents that go down the dungeon as much as
possible. But never prefer agents that maximize the score (e.g.,
by engaging in combat) or that collect ANY gold."

combat}: "Prefer agents that engage in combat, for instance by
killing monsters. But never prefer agents that collect ANY gold or
that go down the dungeon."

MaestroMotif: LLM-assisted Skill Design

We just saw that LLM preference is steerable, and thus the RL agent behavior.
- This means that we can create Motifs to create distinct behaviors, i.e., skills!
- Why skills? Abstraction of action search space.

- For example, think of training a basketball humanoid.
- Imagine all the possible actions (torques on each motor) that can be taken.

- Us humans don'’t think of individual muscles when playing basketball.
- Instead, we think of abstract concepts (skills) like run, pass, dribble, shoot.

- Abstracting the action space greatly reduces the cost of searching/choosing good actions.

- All human has to do is give a high-level intuition of what each skill should be.

MaestroMotif: LLM-assisted Skill Design

1. Use Motif with different prompts to create distinct behaviors (skills).

- New problem: How do we combine multiple skills into one policy? How can we train them?

- Now comes:-- Option Framework
1. Each option (=skill) is a tuple (I, Ty, Bw)
- Initiation (I,,,): Determines when skill w can be triggered
« Skill-policy (,,): Policy of the skill
 Termination (B,,): Determines when skill w must end
2. Policy over options () choose which skill to trigger in skillset Q.

- Skill-policies (m,,) are what we learn with Motif.

. Fill the rest (1,,,, B, Tq) With python codes generated by LLMs!

[1] The Option-Critic Architecture., Bacon et al.
[2] Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning., Sutton, Precup, Singh.

St

Policy over options

Gradients

Critic
P A
Qu. Ag

T

(Environment |

TD error

Environment

ag

MaestroMotif: LLM-assisted Skill Design

LLM-assisted skill design pipeline
1. Create preference datasets with different prompts asking for distinct behaviors (sKills).

2. Make LLM generate codes for when to start/end each skill (1,,, B,,)-
3. Make LLM generate code for policy-over-skKills ().

4. Train the complete set of options via RL.

. D.a = Lo, 5
D — I S —
Interactions A n 'le—ﬂ —»To1 — :
\ ! s e
Dataset : \ Agent Designer LM Coder Lisns B
& Dwgﬁ Reward —T'p5 Init./Term. functions
! training : .
LLM Lo Lo
Annotator | | .
[) Dwn—\ _____ T, A =—
E_ / } Per-skill Per-skil (4 ‘ ==
— Annotated Reward F / ’ > 7TT
Agent Dataset Function . Training Policy
Designer Agent Designer LLM Coder Over Skills
Loy =My s My oy Ty B mmmmmmm e ‘ }
- . . Termination
In|t|atl|on Available Skills Function Reinforcement learning :
Functions to maximize 7', |
l

I
I
I
MN———o——T,
Policy Active SKill 'S o mmm + Environment
Over Skills ~ J

MaestroMotif: LLM-assisted Skill Design

1. Create preference datasets with different prompts asking for distinct behaviors (sKills).
- Same pipeline as Motif, but ran with N distinct prompts.

1. Prepare a bunch of observations with caption.

2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption (win/lose/draw).
3. Repeat that K times to get preference dataset D,y
4. Train a reward model ry, to predict LLM’s preference.

« 3 crucial improvements from Motif
- Improved dataset: RL agent dataset (Baseline Motif) + Human play dataset (Dungeons and Data)

mmm MaestroMotif

mm w/o diffStats

Emm w/o player statistics
B w/o human gameplay

- More input to r,: messages + statistics (contains health, gold, level, ---)

e
i

. diff” state representation: See reference.

o e
[()

Normalized Performance
o
—_

e
o

[1] diff History for Neural Language Agents., Piterbarg et al.

MaestroMotif: LLM-assisted Skill Design

1. Create preference datasets with different prompts asking for distinct behaviors (sKills).
- Generated skills for NetHack
- Discoverer: Explore dungeon, collect items, survive.
« Descender: Find staircases and go down a dungeon level.
- Ascender: Find staircases and go up a dungeon level.
- Merchant: Find a shopkeeper and interact with them.

- Worshipper: Find an altar and interact with it (to identify whether items are cursed or not).

Prompt skill modifiers

{Discoverer}: "players that are adventurous but only within the same
dungeon level, for example by fighting monsters, finding gold pieces
or scrolls; but do not dreop them. Categorically refuse going up and

D _— down dungeon levels."
.) 4 T
Interactions P1

D,
Dataset P-Q “1 : : {Descender}: "the direction of progress is to explore by going down
Dw2—| Reward —T'¢ the dungecon. It is urgent to do so, strongly aveid staying on the
: training | , same level or worse, going higher."
LLM \ | :
Annotator D, _'\ /'_br'@ {Ascender}: "the direction of progress is only by going up a dungeon
(4 s —— " level successfully. Strongly dislike remaining on the same dungeon
F_/—* Per-skill Per-skil level, no matter the consequences."
— Annotated Reward ’ :
Agent Dataset Function) } .
Designer {Worshlpper}: "strongly encourage players that interact with the

altar, primarily for identifying whether items are cursed or blessed,
rather than for praying to or pleasing their god."

{Merchant}: ‘"prefer players that negotiate, sell and interact with
shopkeepers. Be careful not to steal from stores."

MaestroMotif: LLM-assisted Skill Design

2. Make LLLM generate codes for when to start/end each skill (1,,,, By,)-
3. Make LLLM generate code for policy-over-skills ().

Prompt for the train-time policy over skills Code for train-time policy over skills
You are to write code which defines the method "select_skill™ of the class MNetHackPlayer:
NetHack Player class that selects amongst a set of skills in the def _ init (self, max depth, branch depth):

videogame of NetHack. The set of skills corresponds to {"discoverer", self.max_depth = max_depth
"descender", "ascender", "merchant" "worshipper"} s e EE R e
4 ! ! N self.explored_levels =
self.direction = "down’ # Start by going down
When activated, the Discoverer fully explores the current dungeon,
while fighting off enemies. The Descender makes its way to a def merchant_precondition(self):

staircase and goes down. The Ascender makes its way to a staircase # Flaceholder for actual merchant preceondition logic
and goes up. The Merchant interacts with shopkeepers by selling return False

its items. The Worshipper interacts with altars by identifying its o ditionisalf):

items.

Placeholder r actual worshipper precondition logic

return False

Find a strategy that will let the player explore fully each of the

first few dungeon levels, alternating directions between going all def select skill {self, current skill, dungeon_depth, -
the way down towards the maximum depth, then going up towards the e EEE O S C O HE RS B PEEE PR ECOR TS G HE
first dungeon. This might get interrupted by the end of the loop or
if the preconditions of worshipper and merchant allow for it.

if worshipper_precondition:

return ‘worshipper’
You can keep track of any other information by assigning wvalues to
other class attributes, but only if that really helps. if current_skill == ’discoverer’:
self.explored_levels.add (dungeon_depth)
if self.direction == "down’:
if dungeon_depth < self.max_depth:

return *descender’

Your code will be verified through this unit test.

else:
{unit_test} self.direction = Tup’
HHH return fascender’
elif self.direction == "up':
s] 1) if dungeon_depth > 1:
Before writing the code, write a few questions for yourself, and e P

answer them to make sure you understand the assignment. else:
In your response make sure to include the code for the class
definition and the unit test in a python markdown.

)

=

eturn fdesc

elif current skill == "desc
return ‘discoverer’

MaestroMotif: LLM-assisted Skill Design

4. Train the complete set of options via RL.
- Deploy the multi-skill agent in NetHack.

- When a sKill is triggered by policy-over-skills, use the collected sample to train that skill only.

 Details

« CDGPTS5 + PPO (asynchronous)

- Better disentangling between skills

- Used skill-index (one-hot) conditioned architecture instead of multi-head (gradient interference issue).

- Trained until every skill has been trained for 2B steps (so I'm guessing at least 10B steps).

CNN

MLP

MLP

Skill Index

(a) Skill-conditioned policy

-
[
]

u

(b) Multi-head policy

Ablations
B Goal-Cond. & Simultaneously-Learned
mmm Goal-Cond. & Learned In Isolation
B Multiple heads & Simultaneously-Learned
B Multiple heads & Learned In Isolation

(a) Effect of choices in hierarchical
architecture and learning strategy.

o o o
N W

Normalized Performance
©
=

o
o

MaestroMotif: LLM-assisted Skill Design

LLM-assisted skill design pipeline
1. Create preference datasets with different prompts asking for distinct behaviors (sKills).
2. Make LLM generate codes for when to start/end each skill (1,,,, B,,)-
3. Make LLM generate code for policy-over-skKills ().
4. Train the complete set of options via RL.

5. For evaluation task, generate another policy-over-skills by explaining the task to LLM!
- Zero-shot deploy

r-P .

P Loy Boy

} NI _/

In teractlons #1 7. B, "You are to write code which defines the

P m
Dat:
tase ﬁ R d ._>r] Agent Designe LLMC der it Term funetio method "select skill* of the NetHack Player
w #2 class that selects amongst a set of skills in the
: i —_— —>

videogame of NetHack. [...]

Annotator 'D | I .
. 7 . T n . .
(4 9 P wl:.” Yemmo- b ¢k'|| @ You are faced with the task following task.
’ er-sKi 'er-sKii N
ﬁ-_ Annotated Reward n_] —» —»_ T Alternate between the first three levels of [...]"” LLM
Agent Dataset Function Trainin: g Policy
Desig Agent Designe LLM Coder Over Skills Coder
State
N S ¥ R !
L ermination
Inmat.Jon Available Skills Function : Reinforcement learning :
Functions 7TT >~ T : to maximize Ty, | Action
Wi) ——— s
Policy Active SKill ‘Se-mmmm e m e ~ Environmen t . Skill index 7.‘_ P
Over Skills k J . « <%
Environment

Skill neural network Policy Over Skills

MaestroMotif: LLM-assisted Skill Design

Experimental Setting
- Navigation tasks: Reach specific locations (e.g.,.Gnomish Mines, Delphi)
- Interaction tasks: Interact with certain entities (e.g., Buy/Sell, Identify Blessed/Cursed/Uncursed)

- Composite tasks: Sequence of tasks given in language.

Overview of the early game of NetHack J

Baselines
« Using LLM directly as policy (LLaMA+ReAct)

----- Dungeons of Doom

A\ 7 Gnomish Mines

- Applying Motif directly on the task

Shopkeeper ------ £

- Embedding similarity with pretrained text encoder (e.g., MineClip)

. ---- Altar
- Giving score as priviledged reward signal.

! Minetown -+ |

Delphi

MaestroMotif: LLM-assisted Skill Design

Quantitative Results Again, LLMs are bad at handling low-level action space zero-shot

Zero-shot

Task-specific training

Reward Information

Task

MaestroMotif

LLM Policy

Motif

Emb. Simil.

RL w/ task reward + score

Gnomish Mines

46% + 1.70%

0.1% 4+ 0.03%

9% + 2.30%

3% + 0.10%

3.20% + 0.27%

Delphi 20% +£1.20% 0% +0.00% 2% £0.70% 0% =+ 0.00% 0.00% = 0.00%
Minetown 7.2% £0.50% 0% £0.00% 0%+ 0.00% 0% % 0.00% 0.00% + 0.00%
Transactions 0.66£0.01 0.00£0.00 0.08£0.00 0.00 % 0.00 0.01% =+ 0.00%
Price Identified ~ 0.47£0.01 0.00£0.00 0.02£0.00 0.00 £ 0.00 0.00% =+ 0.00%
BUC Identified ~ 1.60+£0.01 0.00£0.00 0.05£0.00 0.00 £ 0.00 0.00% + 0.00%
" GoldenExit | LevelUp&Sell | Discovery Hunger |

i “Alternate between the first | |

“Do not leave the first

{ | “Reach the oracle level (the

Tasks three levels of the Dungeonsé dungeon level until you : | Delphi) in the Dungeons of
i of Doom (at least once) : t achieve XP level 4, then find | '} p,om but not before i
‘\\ i until you collect a minimum | | a shopkeeper and sell an discovering the Gnomish
Methods of 20 gold pieces and defeat item that you have collected; Mines and eating some food
25 monsters; finally try to Eﬁnah’y survive for another L | there afier getting hungry.”
i quit NetHack” i i 300 steps.” P
MaestroMotif 24.80 % +1.18 % 7.09% + 0.99% 7.91% +1.47%
LLM Policy 0% = 0.00% 0% = 0.00% 0% = 0.00%
Motif 0% = 0.00% 0% = 0.00% 0% = 0.00%
Embedding Similarity 0% = 0.00% 0% = 0.00% 0% = 0.00%

MaestroMotif: LLM-assisted Skill Design

Quantitative Results

- Comparison to score maximizing algorithms
—> Score may be a rich evaluation signal, but that does not mean that it can carry out complex behaviors!

IS @
=] =]

Number of Items
(=]
@
(=]

-]
i I R
B/U/C Identification

Completed Transactions Price Identification

F 030
w
w
= .
(&)
=
. -
' —— —— . - . . .
Minetown

Gnomish Mines Deiphi

mmm MaestroMotif ~— mmm Motif == Hierarchical BC + PPO BC + PPO mmm PPO

Figure 5: Performance of MaestroMotif and score-maximizing baselines in interaction tasks (first row)
and navigation tasks (second row). Despite collecting significant amounts of score, score-maximizing
approaches only rarely exhibit any interesting behavior possible in our benchmarking suite.

Summary / Discussion

- Reward/Skill design is labor intensive.

- Motif: High level reward design idea - LLM preference labelling - Train = Aligned RL agent
- MaestroMotif: High level skill descriptions = LLM preference labelling + Coding = Train = Multi-skill agent

- When can we use Motif/MaestroMotif?
- When dataset for reward labeling (with caption) is available
- When the cost of training the skill is affordable (e.g., fast, cheap simulation).

- When the ‘low-level is actually trainable (e.g., can't train humanoid to properly run via pure RL yet).

- Other thoughts
« LLMs as reward function - VLMs as reward function (e.g., VLM-RM, GenRL)
- MaestroMotif pipeline can be incorporated into System1-System?2 design (specifically System1).

- MaestroMotif limits its skills to a few. Autonomous skill acquisition (e.g., Voyager)?

Thank You

