
Designing Skills With LLMs
Martin Klissarov, Pierluca D’oro, Pierre-Luc Bacon,

Amy Zhang, Mikael Henaff, ...

Donghu Kim

Introduction
How does reinforcement learning work? → Maximizing rewards.

e.g., Training a roomba with RL → Clean room = More reward

What is the underlying philosophy of these rewards? → Human Preference.
e.g., Obviously, clean room > dirty room

Problem: Reward design takes way too much effort.
•Rewards are hard to define (Task specification problem)

•Rewards are hard to make ‘dense’ enough (Reward hacking problem)

[1] The Task Specification Problem., Pulkit Agrawal

e.g., What is a clean room? What should be considered ‘dirty’?

e.g., Reward = Amount of dust sucked in → What will happen?

Introduction
If only there was something that can automatically decide what humans prefer...

•LLMs / VLMs have learned human common sense from the internet!

•Motif: Let’s use LLMs’ common sense to design rewards!

•MaestroMotif: Let’s use LLMs’ common sense to design multiple types of rewards (i.e., skills)!

[1] Motif: Intrinsic Motivation from Artificial Intelligence Feedback., Klissarov et al.
[2] MaestroMotif: Skill Design from Artificial Intelligence Feedback., Klissarov et al.

But first...

NetHack
What is NetHack?

•A text-based rougelike game first released in 1987. (Rougelike = You die, everything resets)

•Goal: Go through the Mazes of Menace and find the Amulet of Yendor to gain immortality (ascend).

•You will: discover paths, fight monsters, eat when hungry, collect money/weapon, disable traps, ...

NetHack
What is NetHack?

•...it is excruciatingly difficult.

Official guidebook, btw

•”I played off and on for almost twenty years without ascending.”
- A dude on Reddit, followed by another comment saying “Same.”

•Requires a lot of knowledge about the game.

NetHack
Why NetHack?

•The sheer complexity and diversity opens a huge potential for RL research.

•Extremely fast simulation

[1] The NetHack Learning Environment., Kuttler et al.

•Huge human play dataset available

•Game states are often labelled in text (in ‘message’ form)

•LLMs already have some knowledge about the game

NetHack Learning Environment
The NetHack Learning Environment (NLE)

• There are other configurations, but we’ll talk about the one used in Motif and MaestroMotif.

Policy
𝜋

Action
93 actions (77 commands + 16 directions)

Observation / State
Map(pixels) + Message(text) + Status(text)

[1] NetHack is Hard to Hack., Piterbarg et al.

Reward
e.g. Score

Simulator
NetHack

Motif: LLM-assisted Reward Design
Let’s make LLMs represent human preference / common sense

• Method resembles RLHF (but now using LLM preference to train RL policies)

1. Prepare a bunch of observations with caption.

2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption (win/lose/draw).

3. Repeat that K times to get preference dataset 𝐷𝑝𝑟𝑒𝑓.

4. Train a reward model 𝑟𝜙 to predict LLM’s preference.

5. Use the reward from 𝑟𝜙 to train an RL agent!

Motif: LLM-assisted Reward Design
1. Prepare a bunch of observations with caption.

e.g., “You killed [monster]!” (positive), “You are starving” (negative), “You bump into a wall” (neutral)

• Data collection: Used prior RL method (CDGPT5) to collect roughly 10M observations

[1] NetHack is Hard to Hack., Piterbarg et al.

• NetHack already does the captioning for us

• CDGPT5 = LSTM + PPO (asynchronous) + BC

Motif: LLM-assisted Reward Design
2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption
3. Repeat that K times to get preference dataset 𝐷𝑝𝑟𝑒𝑓.

•1 if {message_1} is better, 2 if the other, ∅ if draw

•LLaMA-2-70B + Chain-of-Thought + Paged Attention

•Automatic draw if two messages are same (happens 5~10%)

•Total 500K preference pairs from 10M dataset.

Motif: LLM-assisted Reward Design
2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption
3. Repeat that K times to get preference dataset 𝐷𝑝𝑟𝑒𝑓.

•Output example

Motif: LLM-assisted Reward Design
4. Train a reward model 𝑟𝜙 to predict LLM’s preference

•Sample a pair from 𝐷𝑝𝑟𝑒𝑓, train with ‘standard loss function in preference-based RL’.

•𝑟𝜙(𝑜) learns to predict the logits that matches the preference hierarchy between observations.

i.e., higher logit to ‘winning’ observations, equal logits when observations are ‘draw’.

•Motif uses only the message (i.e., 𝑟𝜙(𝑚)) with 1D convolution based architecture.

Motif: LLM-assisted Reward Design
5. Use the reward from 𝑟𝜙 to train an RL agent

•Three post-processing techniques on 𝑟𝜙
1. Noise reduction: Remove any reward signal smaller than 𝜖.

3. Count-based normalization: Exponentially decay rewards from the same source (message).

* ‘int’ as in intrinsic reward (from the agent itself), in contrast to extrinsic reward (from the environment)

(i.e., use only top
50% of rewards)

•Final reward: 𝑟𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝛼1𝑟𝑖𝑛𝑡 + 𝛼2𝑟𝑒𝑥𝑡.

(Prevents the agent from getting fixated in a single reward signal)

2. Reward normalization: Subtract mean and divide std (computed from dataset) on every reward.

•Train algorithm: CDGPT5 + PPO, for 2B steps.

Motif: LLM-assisted Reward Design
Experimental Setting

•Tasks (Environments)

•Score: Maximize score (native in NetHack). [Extrinsic reward = Δscore]

•Staircase (level 2,3,4): Reach level X. [Extrinsic reward = 50 upon reaching level X]

•Oracle: Find the character ‘Oracle’ (level>4) [Extrinsic reward = 50 upon finding Oracle]

•Baselines

•Prior exploration method (RND): Gives intrinsic rewards to novel states (haven’t seen before).

•Using LLM directly as policy (Voyager): LLM generates code to create progressively more complex skills

•No exploration (Extrinsic only)

[1] Exploration by Random Network Distillation., Burda et al.
[2] Voyager: An Open-Ended Embodied Agent with Large Language Models., Wang et al.

Motif: LLM-assisted Reward Design
Experimental Setting & Quantitative Results

•Tasks (Environments)

•Score: Maximize score (native in NetHack). [Extrinsic reward = Δscore]

•Staircase (level 2,3,4): Reach level X. [Extrinsic reward = 50 upon reaching level X]

•Oracle: Find the character ‘Oracle’ (level>4) [Extrinsic reward = 50 upon finding Oracle]

Score

Not sure if RND is the right baseline…

Motif: LLM-assisted Reward Design
Quantitative Results

•Motif w/o LLM: 𝑟𝑖𝑛𝑡 = 1 on every single message

•Performs surprisingly well → Preference-agnostic exploration is still better than no exploration

•Still, meaningful performance gap is made only with Motif (left) → Preference labelling is significant!

•Using LLM directly as policy (Voyager)

•Didn’t make progress → LLMs have common-sense, but not the ability to interact with low-level actions.

Motif: LLM-assisted Reward Design
Quantitative Results

•(a) Obviously, scales with LLM size.

•(b) Also obviously, better prompt yields better result.

Motif: LLM-assisted Reward Design
Analysis: Why is Motif good?

•Because the rewards made by LLM “align with human intuition”.

•Prefers messages like “The door opens”, which means that LLMs…

1. Exploration: Have the natural tendency to explore the environment.

2. Credit Assignment: Knows which messages lead to exploration/discovery and directly rewards it.

•Less likely to kill their pets

Analysis: Reward hacking

•Reward hacking can occur even with (or because of) dense rewards made by LLM.

•Hilarious example on Oracle task

•Agent learned to drug itself and hallucinate a monster as the Oracle (why is this even in the game)

•Didn’t happen with different LLM prompt. → Prompt sensitivity?

Motif: LLM-assisted Reward Design

Motif: LLM-assisted Reward Design
Analysis: Steerability

•What if we tell the LLM to prefer specific characteristic?

•LLMs do reflect this in their preference,
→ which affects the reward signal,
→ which affects RL agent’s behavior!

•LLMs’ preferences are steerable, and thus the RL agent!

MaestroMotif: LLM-assisted Skill Design

•This means that we can create Motifs to create distinct behaviors, i.e., skills!

We just saw that LLM preference is steerable, and thus the RL agent behavior.

•Why skills? Abstraction of action search space.

•For example, think of training a basketball humanoid.
→ Imagine all the possible actions (torques on each motor) that can be taken.

•Us humans don’t think of individual muscles when playing basketball.
→ Instead, we think of abstract concepts (skills) like run, pass, dribble, shoot.

•Abstracting the action space greatly reduces the cost of searching/choosing good actions.

•All human has to do is give a high-level intuition of what each skill should be.

MaestroMotif: LLM-assisted Skill Design

•New problem: How do we combine multiple skills into one policy? How can we train them?

1. Use Motif with different prompts to create distinct behaviors (skills).

•Now comes… Option Framework

[1] The Option-Critic Architecture., Bacon et al.
[2] Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning., Sutton, Precup, Singh.

1. Each option (=skill) is a tuple (𝐼𝑤, 𝜋𝑤, 𝛽𝑤)

•Initiation (𝐼𝑤): Determines when skill 𝑤 can be triggered

•Termination (𝛽𝑤): Determines when skill 𝑤 must end

•Skill-policy (𝜋𝑤): Policy of the skill

2. Policy over options (𝜋Ω) choose which skill to trigger in skillset Ω.

• Skill-policies (𝜋𝑤) are what we learn with Motif.

• Fill the rest (𝐼𝑤, 𝛽𝑤, 𝜋Ω) with python codes generated by LLMs!

MaestroMotif: LLM-assisted Skill Design

1. Create preference datasets with different prompts asking for distinct behaviors (skills).

2. Make LLM generate codes for when to start/end each skill (𝐼𝑤, 𝛽𝑤).

LLM-assisted skill design pipeline

3. Make LLM generate code for policy-over-skills (𝜋𝑇).

4. Train the complete set of options via RL.

MaestroMotif: LLM-assisted Skill Design
1. Create preference datasets with different prompts asking for distinct behaviors (skills).

1. Prepare a bunch of observations with caption.
2. Randomly sample 2 observations, ask LLM which is ‘better’ based on its caption (win/lose/draw).
3. Repeat that K times to get preference dataset 𝐷𝑝𝑟𝑒𝑓.

4. Train a reward model 𝑟𝜙 to predict LLM’s preference.

•Same pipeline as Motif, but ran with N distinct prompts.

•3 crucial improvements from Motif
•Improved dataset: RL agent dataset (Baseline Motif) + Human play dataset (Dungeons and Data)
•More input to 𝑟𝜙: messages + statistics (contains health, gold, level, …)

•`diff` state representation: See reference.

[1] diff History for Neural Language Agents., Piterbarg et al.

MaestroMotif: LLM-assisted Skill Design
1. Create preference datasets with different prompts asking for distinct behaviors (skills).

•Generated skills for NetHack
•Discoverer: Explore dungeon, collect items, survive.
•Descender: Find staircases and go down a dungeon level.
•Ascender: Find staircases and go up a dungeon level.
•Merchant: Find a shopkeeper and interact with them.
•Worshipper: Find an altar and interact with it (to identify whether items are cursed or not).

MaestroMotif: LLM-assisted Skill Design
2. Make LLM generate codes for when to start/end each skill (𝐼𝑤, 𝛽𝑤).
3. Make LLM generate code for policy-over-skills (𝜋𝑇).

MaestroMotif: LLM-assisted Skill Design
4. Train the complete set of options via RL.

•Deploy the multi-skill agent in NetHack.

•When a skill is triggered by policy-over-skills, use the collected sample to train that skill only.

•Details

•CDGPT5 + PPO (asynchronous)

•Trained until every skill has been trained for 2B steps (so I’m guessing at least 10B steps).

•Used skill-index (one-hot) conditioned architecture instead of multi-head (gradient interference issue).

→ Better disentangling between skills

MaestroMotif: LLM-assisted Skill Design

1. Create preference datasets with different prompts asking for distinct behaviors (skills).

2. Make LLM generate codes for when to start/end each skill (𝐼𝑤, 𝛽𝑤).

LLM-assisted skill design pipeline

3. Make LLM generate code for policy-over-skills (𝜋𝑇).

4. Train the complete set of options via RL.

5. For evaluation task, generate another policy-over-skills by explaining the task to LLM!
→ Zero-shot deploy

MaestroMotif: LLM-assisted Skill Design
Experimental Setting

•Navigation tasks: Reach specific locations (e.g.,Gnomish Mines, Delphi)

•Interaction tasks: Interact with certain entities (e.g., Buy/Sell, Identify Blessed/Cursed/Uncursed)

•Composite tasks: Sequence of tasks given in language.

Baselines

• Using LLM directly as policy (LLaMA+ReAct)

• Applying Motif directly on the task

• Embedding similarity with pretrained text encoder (e.g., MineClip)

• Giving score as priviledged reward signal.

• Multi-skill Motif + LLM-as-policy?

• Multi-skill Motif + task-specific-finetuning + LLM-as-policy?

MaestroMotif: LLM-assisted Skill Design
Quantitative Results Again, LLMs are bad at handling low-level action space zero-shot

MaestroMotif: LLM-assisted Skill Design
Quantitative Results

• Comparison to score maximizing algorithms

→ Score may be a rich evaluation signal, but that does not mean that it can carry out complex behaviors!

Summary / Discussion
• Reward/Skill design is labor intensive.

• Motif: High level reward design idea → LLM preference labelling → Train→ Aligned RL agent

• MaestroMotif: High level skill descriptions → LLM preference labelling + Coding → Train → Multi-skill agent

• When can we use Motif/MaestroMotif?
• When dataset for reward labeling (with caption) is available

• When the cost of training the skill is affordable (e.g., fast, cheap simulation).

• When the ‘low-level’ is actually trainable (e.g., can’t train humanoid to properly run via pure RL yet).

• Other thoughts

• LLMs as reward function → VLMs as reward function (e.g., VLM-RM, GenRL)

• MaestroMotif pipeline can be incorporated into System1-System2 design (specifically System1).

• MaestroMotif limits its skills to a few. Autonomous skill acquisition (e.g., Voyager)?

Thank You

