Modular Optimization
The Great Mind of Jeremy Bernstein

Donghu Kim

NanoGPT Speedrun

NanoGPT (124M) by Andrej Karpathy

»

L]
= o karpathy / nanoGPT Q, Type(/]to search 8 - + - 0"l e

<> Code () Issues 223 11 Pull requests 68 ® Actions [Projects Q Security |+ Insights

(‘1) nanoGPT public ©Watch 402 ~ % Fork 69k |~ 97 Star 416k~

¥ master ~ ¥ 6Branches © 0 Tags Q, Go to file t Add file ~ <> Code About

The simplest, fastest repository for

ﬂj karpathy Merge pull request #578 from devin-open-source/devin/1733728337 -1 93343d9 - 6 monthsago ¥5) 209 Commits training/finetuning medium-sized GPTs.
assets adjust teaser figure with a more tuned result 2 years ago 0 Readme
&8 MIT license
config Fix for gradient_accumulation_steps training slow 2 years ago
A Activity
data Merge pull request #420 from vinjn/fix-371-enc-is-not-defin... last year v¢ 416k stars
402 watching
0O .gitattributes keep only what's needed 2 years ago @ ' -
% 6.9k forks
0O .gitignore feature: .gitignore - added venv folders last year Report repository
™ ucense Add MIT LICENSE file 3 years ago
Releases
™ READMEmd Merge branch 'master’ into test1 last year
Mo releases published
O bench.py Fix AssertionError on macOS - need to check CUDA availabili... 2 years ago
Packages
0O configurator.py shuttling the poor mans configurator aside into its own file a... 3 years ago 9
[N model.py Merge pull request #274 from apivovarov/gelu 2 years ago
O sample.py Fix AssertionError on macOS - need to check CUDA availabili... 2 years ago
[scaling_laws.ipynb fix typo (params - > tokens) 2 years ago
0O train.py fix: ensure non-zero learning rate during warmup at iteratio... 6 months ago
[transformer_sizing.ipynb oops forgot to subtract embedding params, which don’t ent... 2 years ago + 23 contributors
7 README &85 MIT license = Languages

@ https://github.com/karpathy/nanoGPT

https://github.com/karpathy/nanoGPT

NanoGPT Speedrun

A man simply must go fast

=) O Kellerlordan / modded-nanogpt Q Type (/] to search 8 - + -

©

n @'Q I

<> Code (O lIssues 5 19 Pull requests 3) Discussions () Actions [Projects @ Security |+ Insights

. modded-nanogpt public ©watch 44 -~ % Fork 3n ~ Starred 2.6k

0 README &3 MIT license Z

Modded-NanoGPT

This repository hosts the NanoGPT speedrun, in which we (collaboratively|competitively) search for the fastest
algorithm to use 8 NVIDIA H100 GPUs to train a language model that attains 3.28 cross-entropy loss on the FineWeb
validation set.

The target (3.28 validation loss on FineWeb) follows Andrej Karpathy's GPT-2 replication in llm.c, which attains that
loss after running for 45 minutes. The speedrun code also descends from llm.c's PyTorch trainer, which itself descends
from NanoGPT, hence the name of the repo. Thanks to the efforts of many contributors, this repo now contains a
training algorithm which attains the target performance in:

s 3 minutes on 8xH100 (the llm.c GPT-2 replication needed 45)
» (0.73B tokens (the llm.c GPT-2 replication needed 10B)

*But also for a reason: [1]

https://kellerjordan.github.io/posts/muon/#discussion-solving-the-undertuned-baseline-problem-with-the-competitive-task-framework

N

4 Re.ccr-::l
time
1 45
minutes
314
2 .
minutes
2.990
22 ,
minutes
2979
23 ,
minutes

https://github.com/KellerJordan/modded-nanogpt

NanoGPT Speedrun

A man simply must go fast

Description

llm.c baseline

Tuned learning rate & rotary
embeddings

Faster gradient all-reduce

Overlap computation and
gradient communication

Date

05/28/24

06/06/24

05/24/25

05/25/25

Log

log

log

Contributors

@karpathy, llm.c contributors

@kellerjordan0

@KonstantinWilleke, @alexrgilbert,
@adricarda, @tuttyfrutyee, @vdlad;
The Enigma project

@ryanyang0

https://github.com/KellerJordan/modded-nanogpt

~11min speedup

NanoGPT Speedrun

What's that?

Record
e-cor Description Date Log Contributors
time
45 llm.c baseli 05/28/24 | @karpathy, |l tribut
m.c baseline 0 arpathy, llm.c contributors
minutes - — pathy
314 Tuned learni te & rot
| e e e Y 06/06/24 log @kellerjordan0
minutes embeddings
24.9 Introduced the M
, i rF’ .uce 1e vuon 10/04/24 none @kellerjordan0, @jxbz
minutes optimizer
22.3 , :
, Muon improvements 10/11/24 log @kellerjordan0, @bozavlado
minutes
15.2 Pad embeddings, RelU?, -
, OCCTRECCNOn TE I 10/14/24 log | @Grad62304977, @kellerjordan0
minutes init projections, QK-norm
13.1 Distributed the overhead of :
minutes Muon 10/18/24 log @kellerjordan0

Faster Optimization

More sample-efficient than Adam but at the same speed?

Optimizer comparison by tokens (NanoGPT speedrun)

4.1
—— Adam 139ms/step
4.0 DistributedShampoo (UpdateFreq=10) 179ms/step
—— DistributedShampoo (UpdateFreq=32) 154ms/step
3.9 ~ —— SOAP* 301ms/step
—— Muon 142ms/step
¢ 3.8 -
o
S 3.7
=
©
2 3.6
©
=
3.5 1
3.4 A
3.3 A
0.0 0.5 1.0 1.5 2.0 2.5

Training tokens 1e9

& https://kellerjordan.github.io/posts/muon/#results

https://kellerjordan.github.io/posts/muon/#results

h=”

Hyperparameter Transfer

Somehow makes scaling easier?

(Cousin of Muon) (Muon)

Adam (SP) Adam (uP) Dualization

wn

S

= 100 - -

c

— (

c 107! -+ o -

©

o 1072 o .

©

_UE- IR | SR EEE W T T T Trrrg L T T 1111

102 10-110-2 100 10-1 100
Learning rate

Table 1: Hyperparameters That Can Be pTransferred, Not pTransferred, or yTransferred
Across, with a few caveats discussed in Section 6.1. * means empirically validated only on Trans-
formers, while all others additionally have theoretical justification.

pTransferable Not pTransferable pTransferred Across

optimization related, init, regularization width, depth*, batch size*,
parameter multipliers, etc (dropout, weight decay, etc) training time*, seq length*

https://kellerjordan.github.io/posts/muon/#results

[Z Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer., Yang et al.

https://kellerjordan.github.io/posts/muon/#results

Muon

Momentum + Orthogonal Gradients

1. Compute gradient G = Vgl

2. Update momentum B; = uB;_, + G;

3. Orthogonalize B,=Uxv!>o0,=U0V"T
4. Update 0, =0,_1—n0;

Why would orthogonal gradients help?

Today’s Goal

Understand that

muon s a steepest descent under spectral norm
and why it’s a good idea.

Today’s Goal

Understand that

I. Preliminary

Some Norms Are Induced by Others

Consider the linear transformation:

A
X — AX

How do we measure the ‘size’ of A?

& Style by: https://www.youtube.com/watch?v=40AiakkmKQs

https://www.youtube.com/watch?v=4OAiakkmKQs

Some Norms Are Induced by Others

Operator Norm (Induced Norm)

A
X — AX

A is an operator. A is defined by how it changes x

The ‘size’ of A should thus be defined by how much it changes x.

& https://youtu.be/uQhTuRIWMxw?si=uCGiRT0j25Pdm3dT&t=172

https://youtu.be/uQhTuRlWMxw?si=uCGiRToj25Pdm3dT&t=172

Some Norms Are Induced by Others

Operator Norm (Induced Norm)

A is a linear operator that maps one space (equipped with [|-]|,) to other space (with |[-l,).

Rn SRm
X l=AX

111 -1l

Then the operator norm A is defined by the maximum norm growth from input to output:

s sup lIAXl; — sup
“A“a—)B — X#(? ”X”a - ||X||a=1”AX“B

Foreshadowing: we should use this to measure the norm of weight matrices in ML/DL!

Some Norms Are Induced by Others

Operator Norm (Induced Norm)

Now we can draw the full diagram:

SRII iRnxm ERm

I

; -y
LT R [| S | -5
Input Space Operator Space Output Space

Q
4
=

Example: Mapping from Euclidean to Euclidean (£,-to-£,)
Then the operator norm of A is the spectral norm:

A |[Ax]| :
Allg, p, = il:fIJ)HTH; = (largestsingularvalueof A) = ||All. = ||All_

* £,-to-2, operator norm = Spectral norm = Schatten-conorm

Some Norms Are Induced by Others

Dual Norm

A special case of operator norm, where A is a vector rather than a matrix.

a
X — aTx

Still an operator, but maps to a scalar rather than another vector space!

RO R

X y=aTx

II-11,

Some Norms Are Induced by Others

Dual Norm

a is a linear operator that maps a vector space (equipped with ||-]|,) to a scalar.

RO R

———

Yy

Il-1l,

This defines the dual norm of «, indicated by the dagger(3):

aTx
”a”;rl A Sup sup

T
x=0 ||l =1 X

Some Norms Are Induced by Others

Dual Norm

We also have a special name for the spaces in this case:

X a_
| : ~Yy
Il 0N
Primal Space Dual Space

Important note: Dual of £, is £, where 1/p +1/q =1

Example: Dual of £, is £,, dual of £, is £...

Gradients Live in Dual Space

When | was a wee little undergraduate...

“Gradients tell us how fast the loss changes...
isn't it so weird that we directly subtract it from the parameter?”

Intentional confusion

On higher dimension: moving x to minimize y = f(x), x € R?

If x is currently at a, how much should x move? —V,f(a)!

. Ve, f(a) . | o .
Gradient V. f(a) = Y consists of 2 partial derivatives to corresponding axes
V."sz(a)
Seems pretty “descent-y” ---but the blue arrow still seems to be out of nowhere!

= x2 4 x2
Y=X;+Xx3

Gradients Live in Dual Space
111 That's Because 11111

The gradient V L is a first-order approximation on how fast the loss L changes (near w).

L(w+Aw) = L(w) + gTAw | === gTAw = L(w+Aw)-L(w) = AL

Gradients Live in Dual Space

111 That's Because 11111

i.e., the gradient is a linear operator on Aw (that approximates AL).

Aw —2 gTAw || 8= Vel

gTAw = AL

So even though Aw and g are both R?, they in fact live in different spaces: primal and dual!

Aw Y=g Aw
[
Primal Space Dual Space

Foreshadowing: everything gradient related will involve the dualization:

sup

T
=1 & %

Gradients Live in Dual Space

Why didn’t we care about this the entire time?

Because we don't need to if we're using Euclidean norm!

1. Recall that: dual of £, is €, where1/p +1/q =1

2. So, if we're using Euclidean norm (£,) on the parameters (primal space):

gt 2 g™x = |lgl| The gradients (dual space) are also
Bl = ”"” =1 = 8l | measured by Euclidean norm!

3. More importantly (and jumping a bit ahead):

ligll? Argmax gy - lgll, 8 _ _1 ;5 | Gradient IS the steepest descent
A Ikdl=1 A llgll, A = | under Euclidean norm!

SteepestDescent =

Summary

Operator norm a—>f is defined by the maximum norm growth from input to output:

. suplIaxlly qup
”A”O(—)B —_ x#0 ”X”a - ”X”a=1 ”Ax”B

We will use this to measure the norm of weight matrices in neural networks.

The dual norm of «a is a special case of operator norm where the output is a scalar

Gradients live in dual space (of parameters), so it will always involve the dualization:

sup
lIxll,=1

g'x

Sofar...

Understand that
norm

II1. Steepest Descent

Optimization Algorithms

Gradient-based optimizers are basically...

1. Taylor Expansion on the loss function

L(w+Aw)

L(w) + gTAw

-+

2. Approximate high-order terms

L(w+Aw)

~
~

L(w) + gTAw

-+

YbAWTHAW +

D(w,w+Aw)

3. Minimize (find Aw that minimize RHS)

Optimization Algorithms

Different higher-order modeling = Different optimization

L(w+Aw) [= | L(w)+gTAw | + | %AwTHAw | +

ex1) Euclidean Norm - Gradient Descent (15t order method)

=~ | L(w)+gTAw | + LA* [|Awl]|3

Optimization Algorithms

Different higher-order modeling = Different optimization

L(w+Aw) [= | L(w)+gTAw | + | %AwTHAw | +

ex1) Euclidean Norm - Gradient Descent (15t order method)

=~ | L(w)+gTAw | + LA* [|Awl]|3

ex2) Hessian Matrix - Newton’s Method (29 order)

=~ | L(w)+gTAw | + 1, AWTHAW

Optimization Algorithms

Different higher-order modeling = Different optimization

L(w+Aw) [= | L(w)+gTAw | + | %AwTHAw | +

ex1) Euclidean Norm - Gradient Descent (15t order method)

=~ | L(w)+gTAw | + LA* [|Awl]|3

ex2) Hessian Matrix - Newton’s Method (29 order)

=~ | L(w)+gTAw | + 1, AWTHAW

ex3) Some distance function D on output f
- Natural Gradient Descent (2"9 order)

R

L(w) + gTAw | + D(f,f+Af)

R

L(w) + gTAw | + |%AwT(V,fTVZD V,f)Aw

Optimization Algorithms

A lot to argue about which is better, but let's just say that...

Same Steepest Descent, Different Norms

...ahd we will see that these all use the same formula as SGD

+ Yo" [|Aw|3
+ HLA*|Awl]lZ
+ yoA* AWl ,,
+ yoA* AW,

Same Steepest Descent, Different Norms

Always has been
Y=

—_—

N = ‘4‘,

j Jeremy
Bernsteln

Same Steepest Descent, Different Norms

The first-order method:

Liw+Aw) | = | L(w) +gTAw | + BLAWTHAW | +
< | L(w)+gTAw | + 1/27I*||AW|I|2
v v

Sharpness parameter Square of any norm

This is also called a steepest descent

Proposition 1 (Steepest descent) For any g € R™ thought of as “the gradient” and any

A = 0 thought of as “the sharpness”, and for any norm || : R* — R with dual norm |-|:
_ A , i
arg min [g Aw + — |[Aw “’] = — l .argmaxg ' t. (1)
AweRn 2 t]=1

|© Old Optimizer, New Norm: An Anthology., Bernstein & Newhouse.
Note: You can actually derive the %21* [[Aw || under Lipschitz condition on the gradient (which is indeed related to sharpness); see Appendix B.1 and B.3.

Same Steepest Descent, Different Norms

Simple intuition: A decides step size, ||-|| decides direction

A f

arg min [gTAw + = HAwH?] = _lgl" -argmax g ' t.

AweRn 2 A It]|=1
1 J

Step direction
1. Draw a unit ball of selected norm
2. Find the direction that changes L the most

a) varying sharpness A b) varying choice of norm Il

Same Steepest Descent, Different Norms

Extra intuition: gradients are always ‘dualized’

A f
arg min [gTAw + — ||/_\.w||2] = — 9| -argmaxg ' t.
AweRn 2 A t]=1
L J
Step size Step direction

which uses dual norm on g also called a duality map on g

Recall: g is an operator on w, so any operation on g must depend on w (or t).

Definition 1 (Dual norm). Given a norm |-| : R* — R, the dual norm |-|7 of a vector g € R™ is given by:
T . T E
‘= max t.)
lg| X g (5)
Definition 2 (Duality map based on a norm). Given a norm |-| : R" — R, we consider the duality map:
dualize.| g := argmax g't, (6)
teR™:[t]=1

where, if the argmax is not unique, dualize|.,| returns any mazrimizer.

|© Modular Duality in Deep Learning., Bernstein & Newhouse.

Same Steepest Descent, Different Norms

Example: Vanilla Gradient Descent is steepest under £,

A i
arg min [gTAw + 2 ||/_\.w||2] = —@ -argmaxg ' t.

AweRn It =1

) argm _ 8
lgll} 2 5 87 = ligll; et 81X = ligll,

-l-
Igl} argmax gr, _ gl & 1
A IIxIl,=1 A ”g”2 A
Wi = Wy '%g

Same Steepest Descent, Different Norms

Example: Adam without EMA is steepest under £,

Adam'’s update rule:

my = 31 MMy 1 + (1 — 31) gt
vy = P9 -vi—1+ (1 —f3)- gf,

f
Wiyl = W — 1) - Mg/ A/ Vg,

Adam without EMA (B, = B, = 0) is a sign descent:

— / fl{_Q
Wiyl = Wy — 1 Gy V gi

= w; — 1 -sign(gy).
Note: Same applies to any sign descent algorithms such as RMSProp and Lion.

Note: “EMA can then be thought of as “smoothing out” the algorithm, or making it more robust to mini-batch noise, although nailing down the precise role of EMA is perhaps still an open problem”
[Old Optimizer, New Norm: An Anthology., Bernstein & Newhouse.

Same Steepest Descent, Different Norms

Example: Adam without EMA is steepest under £,

+
arg min [gTAw + i ||/_\.w||2] = _lal" -argmaxg ' t.
AweR™ 2 A It|=1
ax o
lgllf, = ||§|1|11=)1 g™x = |lgll, aﬁ)ﬁrl;ll gTx = sign(g)

lgll} lIgll, _.
S © argmax 5Ty — 1
N -1 S % \ signig)

Wi = Wi~ Hilll sign(g)

Summary

The first-order method:

Liw+Aw) | = | L(w) +gTAw | + BLAWTHAW | +
< | L(w)+gTAw | + Vo) | Aw|P
S;uare of any norm
e O R S

and the choice of norm results in a completely different algorithm!

Next Question

Which norm should be use?

A l
arg min [gTAw + — ||A'w||2] = _lgl! .argmax g ' t.
AweRn 2 A =1

0.0, ..., 0.7
Hold on...

W is not a vector, they are matrices with structure...

Can’t we use matrix norms here?

Sofar...

Understand that
steepest descent norm

III. Modular Steepest Descent

Norms Should be Defined Layerwise

What we've been doing so far:

flatten :

WER™

arg min
AweR"

A
[gTAw + 3 ||Aw||2] =

- arg max th.
t]=1

gl
A

Flattening completely erases the structure of the network!

- Number of layers (Depth)

- Size of each layer (layerwise width)
- Layer type (CNN, MLP, Attention, ...)
- Weights are matrices, not vectors!

- Weights are operators, not just matrices!

Norms Should be Defined Layerwise

What we should be doing:

1. Measure each matrix individually: ||+ llg,!1+ [y, [g3

L
f(x)

I
W3 —’||W3||[3]

]
W, — Wl

]

W1 — [[W, [1]

Norms Should be Defined Layerwise

What we should be doing:

1. Measure each matrix individually: ||+ [k, [l -, [|y

2. Get total norm of the network |[wl| by weighted max

W3 — ||W3| |[3]

W2 — [[W],

Rl |lwl[]?2 2max Slz ”Wl”[zl]

Wl — [IWl Iy 1

Note: The weights s seems to connect to ‘sensitivity’ in later works (for now they're just set to 1).

Note: The max operation kinda makes sense when you actually derive the results (although I'm still unsure of the intuition). See Appendix C.
| Scalable Optimization in the Modular Norm., Large et al.

I Modular Duality in Deep Learning., Bernstein & Newhouse.

Norms Should be Defined Layerwise
What we should be doing:

1. Measure each matrix individually: ||+ [k, [l -, [|y
2. Get total norm of the network [|wl| by weighted max.

3. We can go back to the same steepest descent.

L
£(x)

T —
W3 — ||W3| |[3]
W2 — [[Wll;
Wl — [IW];

- Iiwll2 £ max s?IW, 12,

[

Steepest Descent

arg min [g "Aw + = |Aw E]
AweRn 2

A

Modular Steepest Descent

min
AW,..., AW,

|

L

A ‘ ‘
> (Gi, AWy + & mix 57| AW
il -

Norms Should be Defined Layerwise

No big difference other than “is it layerwise or not”.

Steepest Descent Modular Steepest Descent
argmin | g Aw + A | Aw|? min i((}' AW} + A st | AW, |7
(&%UERH g 2 AWL,.. AW, | b A s i

gl r __n T
Aw = — argmax g't AW; = argmax < G;, T; >
A =1 St ||TilI=1
Norm on flattened vector Norm on each matrix
Can use only vector norm Can use matrix norm
All layers are jointly solved Each layer is individually solved

Now the question is: “Which matrix norm do we use?”

Note: For the full solution and derivation of modular steepest descent, see Appendix C.

Which Norm Should We Use?

We need to first ask: what are the matrices doing?

They are linear operators that map (each of their) input space to output space!

ERin ng %d JRout
x 4 W; A h,H W, Hh,H W; | fx)

Which Norm Should We Use?

We need to first ask: what are the matrices doing?

They are linear operators that map (each of their) input space to output space!

ERin ng md JRout
x 4 W; A h,H W, Hh,H W; | fx)

Which means their norms are induced by the norm of the features they work on!

v v v
IWillsn, IIWolhsn, TWall,sy
| . sup 18Xl
Recall: | [IAll 5 £ i‘j})’mﬁ = ey llAxdl,

Which Norm Should We Use?

We need to first ask: what are the matrices doing?

They are linear operators that map (each of their) input space to output space!

ERin ng md JRout
x 4 W; A h,H W, Hh,H W; | fx)

Which means their norms are induced by the norm of the features they work on!
; ; ;
Wilksn, IWolhysn, [TWilhysy

Now the question becomes: “Which feature norm do we use?”

Which Feature Norm Do We Use?

Example: Adam without EMA is steepest under max £,2 €., norm.

Interestingly, Adam can also be thought as using £,> €., norm on every weight matrix.

First, the £, €., norm is simply the largest entry of the matrix.

s sup 1Al sup max
1Alle e, = 7.5 Tkl Tl 1”AX” 1A

*Maximized when x=one-hot(j) where max entry is at A;

Then, £, is (coincidentally) the maximum of £, £_, norms (a.k.a. max-of-max norm)!

|wlleo = maxmax |[row, (W) |oo = max [Wile, e,

L

A \
. : T 2) I))
arge min Aw + = || Aw G A A Lo
Nern | 2 |Aw] AW AW, LZ;< H AW + 5 max st | AW

Which Feature Norm Do We Use?

Example: Adam without EMA is steepest under max £,2 €., norm.

Is £,> £, natural? Probably not...

Still, they ARE doing modular steepest descent, which may explain why they work so well.

AW, = —n - sign(G)) for each layer 1 =1, ..., L. (11)

In words, the matrix-aware steepest descent problem of Equation (10) is solved by layerwise
sign descent as given in Equation (11). This observation—that sign descent updates are
implicitly doing per-matrix gradient normalization—may be a major reason that Adam, sign
descent and Lion (Chen et al., 2023) outperform vanilla gradient descent in large language
model training (Zhao et al., 2024; Large et al., 2024). The proof is given in Appendix B.

Still still, we can probably do better than this!

|© Old Optimizer, New Norm: An Anthology., Bernstein & Newhouse.

Summary

Norms should be measured layer-by-layer

Steepest Descent

Modular Steepest Descent

A
argmin | g' Aw + = | Aw|? A
Eigm? g Aw + 5 |Aw|| AW;LI,T.I},HAWL [Z(G; AVV;)Jr max st | AW, |7
lgll*) _n .
Aw = — argmax g’ t AW; = argmax < >
A ig= St |ITil|=1

Question: Which matrix norm should we use?

Answer: Matrices in NNs are operators, so it should be an operator norm (a-).

New Question: Which feature norm (o, 8) then?

1Al 2

s sup IAxll;
i |1l

- IIxII =1

P |axll,

Sofar...

Understand that
a steepest descent under modular norm

IV. Deriving Muon

Which Feature Norm Does Muon Use?

Muon asks: which feature norm are we using?

Since we love LayerNorm sooo much, we're using £, norm* almost everywhere!

ERin ng md JRout
x 4 W; A h,H W, Hh,H W; | fx)

So except for input and output, Muon wants to follow exactly that!

v v v
IWillse, Wallpse, 1TWilles,

We can define input and output norms, but let's only think about hidden features.

Note: Technically it's € gyg Which scales €, by sqrt(dim), so it affects step size (but not the direction). This opens a whole another story; see spectral condition and muP.

Muon

Muon w/o momentum is steepest under £, ¢, norm

1. Compute gradient G = Vgl
2. Update momentum B; = uB;_; + G;
3. Orthogonalize B,=Uxv!>o0,=U0V"
4. Update Ht — Ht—l — T]Ot

: - AL o 2 -——Earmax . T.
iy, | 4G AWD + St HIAWIIE | | | AW = =S argmax < Gy T; >

argmax <G, T> = UVT

ITllgp =1

Note: | intentionally hid the dual norm once we moved to matrix norms to only focus on the orthogonalization part. See Appendix C.3 for full derivation.

Muon

Muon w/o momentum is steepest under £, ¢, norm

argmax <G 1> = UVT AW; = —Eargmax <G;,T; >

[ITllg =1 St ||TqlI=1
max <G,X>= max tr(G'X)
||X||lz—>l2:1 ||X||lz—>12:1

= x(hax tr(VEUTX) (Spectral decomposition G = UzV")
-1~

= ximax _ tr(SUTXV) (Cycle property of trace: tr(ABC) = tr(BCA) = tr(CAB))
12—>12_

= tr(CUTUVTY) Maximized by: X = UVT

=tr(X)

Orthogonalization via Newton-Schulz

Should we perform SVD every time we update?

1. Compute gradient G, = Vgl

2. Update momentum B; = uB;_; + G;

3. Orthogonalize B,=Uxv!>o0,=U0V"
4. Update 0, =0,_1—n0;

People have found a much faster way to find UVT without performing SVD!
The Newton-Schulz iteration:
2 1. .
Xer1 = §Xt - EXtXt Xt
...that's it. X gets closer to orthogonal after every iter.

Orthogonalization via Newton-Schulz

| can’t believe it's that easy!

2 1 T
Xtt1 = §Xt — EXtXt Xt

2 1 %
— ZysyT — —usvT.veTuT . ysyT | | V3 N

o A\ IOy =
=§UZVT—EUZ3VT |
vy (gz _ %23>VT f (o) fffff (o)

f(gl) on each erl1try As long as 0 < o < /3, every iteration gets o closer to 1!

Note: Muon uses higher polynomials with better coefficients in practice, but they basically do the same thing but faster.
Note: The 0 < ¢ < V3 condition can be satisfied by normalizing the matrix by its Frobenius norm first (which doesn’t affect the final output).

Sofar...

Understand that
muon s a steepest descent under spectral norm

V. Unfinished Business

Unanswered Questions
(And Where to Find the Answers)

Q1. Why is spectral descent a good idea?
A1. This blog (3min): https://jeremybernste.in/writing/deriving-muon
tl;dr - Because it takes the largest improvement within a safe range.

For the third step in the derivation, we consider choosing a weight update
to maximize the linear improvement in loss £ while maintaining a bound on
the amount that the outputs can change in response. The rationale is that if
the weight update makes the layer outputs change too much, this could de-
stabilize the overall network. In symbols, we would like to solve:

Izll"/‘l} (VwL,AW) subject to |Ay|rms <n.

change to directly controlling the size of the weight update itself. If the input
has size ||z||lrms < 1. we obtain the following problem as a proxy:

12%1 (VwL,AW) subject to [[AW|rms_rMs < 7. (1)

fan-out
-t SOTTVE

AW = —p x .
fan-in

Also recommended: Spectral Condition / Appendix] of Tensor Programs V

https://jeremybernste.in/writing/deriving-muon
https://arxiv.org/abs/2310.17813v2
https://arxiv.org/abs/2203.03466

Unanswered Questions
(And Where to Find the Answers)

Q2. Why should we use L2 or RMS norm?

A2. We don't need to. There is little known about what is the best norm.
(The modular norm paper came out late 2024, so000...)
In fact, there are words that EMA allows optimizers like Adam or
Shampoo to adjust to the ‘right’ norm for each layer.

& https://x.com/leloykun/status/1847919153589735705

https://x.com/leloykun/status/1847919153589735705

Unanswered Questions
(And Where to Find the Answers)

Q3. What will happen in the future?

A3. Bernstein is expanding on the idea of modular optimization.
He believes that every layer can be designed like lego blocks,
which will make it easier to understand what's going on inside the NNs.

@ https://jeremybernste.in/writing/deriving-muon Conclusion
@ https://docs.modula.systems/

L Scalable Optimization in the Modular Norm., Large et al.

L. Modular Duality in Deep Learning., Bernstein, Newhouse.

https://jeremybernste.in/writing/deriving-muon
https://docs.modula.systems/

Unanswered Questions
(And Where to Find the Answers)

Q4. Has Muon been applied to larger LLMs?
A4. Yes.

L. Muon is Scalable for LLM Training., Liu et al.

Q5. Has Muon been applied to RL?

A5. Not yet. Our attempt while building V-Simba was unsuccessful.

Could not outperform Adam, but I may not have been cautious enough
with the implementation details (e.g., on convolution).

L. Modular Duality in Deep Learning., Bernstein, Newhouse.
@ https://x.com/jxbz/status/1846188906733044029
@ https://x.com/tianylin/status/1896542545557262606

https://x.com/jxbz/status/1846188906733044029
https://x.com/tianylin/status/1896542545557262606

“Though this be madness, yet there is method in’t.”
Hamlet

	슬라이드 1: Modular Optimization The Great Mind of Jeremy Bernstein
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63
	슬라이드 64
	슬라이드 65
	슬라이드 66
	슬라이드 67

