
Modular Optimization
The Great Mind of Jeremy Bernstein

Donghu Kim

NanoGPT Speedrun
NanoGPT (124M) by Andrej Karpathy

 https://github.com/karpathy/nanoGPT

https://github.com/karpathy/nanoGPT

A man simply must go fast

*But also for a reason: [1]

NanoGPT Speedrun

https://kellerjordan.github.io/posts/muon/#discussion-solving-the-undertuned-baseline-problem-with-the-competitive-task-framework

A man simply must go fast

...

NanoGPT Speedrun

https://github.com/KellerJordan/modded-nanogpt

https://github.com/KellerJordan/modded-nanogpt

What’s that?

NanoGPT Speedrun

~11min speedup

More sample-efficient than Adam but at the same speed?

Faster Optimization

 https://kellerjordan.github.io/posts/muon/#results

https://kellerjordan.github.io/posts/muon/#results

Somehow makes scaling easier?

Hyperparameter Transfer

(Cousin of Muon) (Muon)

 https://kellerjordan.github.io/posts/muon/#results
 Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer., Yang et al.

https://kellerjordan.github.io/posts/muon/#results

Muon

1. Compute gradient
2. Update momentum
3. Orthogonalize
4. Update

Why would orthogonal gradients help?

Momentum + Orthogonal Gradients

𝐺𝑡 = ∇𝜃𝐿

𝐵𝑡 = 𝜇𝐵𝑡−1 + 𝐺𝑡
𝐵𝑡 = 𝑈Σ𝑉𝑇

→ 𝑂𝑡 = 𝑈𝑉𝑇

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑂𝑡

Today’s Goal

Understand that
muon is a steepest descent under spectral norm

and why it’s a good idea.

Today’s Goal

Understand that
muon is a steepest descent under spectral norm

and why it’s a good idea.

I. Preliminary

Some Norms Are Induced by Others

 Style by: https://www.youtube.com/watch?v=4OAiakkmKQs

Consider the linear transformation:

x
𝐴

Ax

How do we measure the ‘size’ of A?

https://www.youtube.com/watch?v=4OAiakkmKQs

Operator Norm (Induced Norm)

Some Norms Are Induced by Others

x
𝐴

Ax

The ‘size’ of A should thus be defined by how much it changes x.

A is an operator. A is defined by how it changes x

 https://youtu.be/uQhTuRlWMxw?si=uCGiRToj25Pdm3dT&t=172

https://youtu.be/uQhTuRlWMxw?si=uCGiRToj25Pdm3dT&t=172

Operator Norm (Induced Norm)

Some Norms Are Induced by Others

Then the operator norm A is defined by the maximum norm growth from input to output:

A is a linear operator that maps one space (equipped with || · ||α) to other space (with || · ||β).

x

ℜn ℜm

y
|| · ||α || · ||β

α and β can be any type of norm of our choice.

Foreshadowing: we should use this to measure the norm of weight matrices in ML/DL!

sup
x≠0

||Ax||β
||x||α

||A||α→ β ≜
sup

||x||α=1 ||Ax||β=

Operator Norm (Induced Norm)

Some Norms Are Induced by Others

Then the operator norm of A is the spectral norm:

Now we can draw the full diagram:

x

ℜn ℜm

y

||A||ℓ2→ℓ2
≜ = (largest singular value of A) = ||A||*= ||A||S∞

Example: Mapping from Euclidean to Euclidean (ℓ2 -to-ℓ2)

ℜn×m

|| · ||α→ β|| · ||α || · ||β

sup
x≠0

||Ax||2

||x||2

Input Space Operator Space Output Space

* ℓ 2 -to-ℓ 2 operator norm = Spectral norm = Schatten-∞norm

Dual Norm

Some Norms Are Induced by Others

A special case of operator norm, where A is a vector rather than a matrix.

x

ℜn ℜ

y
|| · ||α

x
𝑎

aTx

Still an operator, but maps to a scalar rather than another vector space!

Dual Norm

Some Norms Are Induced by Others

This defines the dual norm of α, indicated by the dagger(†):

a is a linear operator that maps a vector space (equipped with || · ||α) to a scalar.
α can be any type of norm of our choice.

x

ℜn ℜ

y
|| · ||α

sup
x≠0

aTx
||x||α

||a||𝛼
† ≜ = sup

||x||α=1
aTx

Dual Norm

Some Norms Are Induced by Others

We also have a special name for the spaces in this case:

x

ℜn ℜ

y

ℜn

Primal Space Dual Space Scalar

|| · ||α || · ||𝛼
†

Example: Dual of ℓ∞ is ℓ1, dual of ℓ1 is ℓ∞.

Important note: Dual of ℓp is ℓq , where 1/p + 1/q = 1

When I was a wee little undergraduate…

Gradients Live in Dual Space

“Gradients tell us how fast the loss changes…
isn’t it so weird that we directly subtract it from the parameter?”

↑↑↑↑↑ That’s Because ↑↑↑↑↑

Gradients Live in Dual Space

The gradient ∇θL is a first-order approximation on how fast the loss L changes (near w).

L(w+Δw) ≈ L(w) + gTΔw gTΔw ≈ L(w+Δw)-L(w) = ΔL

θ

↑↑↑↑↑ That’s Because ↑↑↑↑↑

Gradients Live in Dual Space

Δw
𝑔

gTΔw g= ∇θL gTΔw ≈ ΔL

i.e., the gradient is a linear operator on Δw (that approximates ΔL).

Δw

ℜn ℜ

ΔL

ℜn

Primal Space Dual Space Scalar

|| · ||α || · ||𝛼
†

So even though Δw and g are both ℜn, they in fact live in different spaces: primal and dual!

Foreshadowing: everything gradient related will involve the dualization:
sup

||x||α=1
gTx

Why didn’t we care about this the entire time?

Gradients Live in Dual Space

Because we don’t need to if we’re using Euclidean norm!

1. Recall that: dual of ℓp is ℓq , where 1/p + 1/q = 1

2. So, if we’re using Euclidean norm (ℓ2) on the parameters (primal space):

3. More importantly (and jumping a bit ahead):

The gradients (dual space) are also
measured by Euclidean norm! ||g||2

† ≜ sup
||x||2 =1

gTx = ||g||2

Steepest Descent = argmax
||x||2 =1

gTx
||g||2

†

λ

||g||2
λ

=
||g||2

g
-

λ
= g- 1 Gradient IS the steepest descent

under Euclidean norm!

Summary
Operator norm α→ β is defined by the maximum norm growth from input to output:

We will use this to measure the norm of weight matrices in neural networks.

sup
x≠0

||Ax||β
||x||α

||A||α→ β ≜
sup

||x||α=1 ||Ax||β=

The dual norm of α is a special case of operator norm where the output is a scalar

sup
x≠0

aTx
||x||α

||a||𝛼
† ≜ = sup

||x||α=1
aTx

Gradients live in dual space (of parameters), so it will always involve the dualization:
sup

||x||α=1
gTx

So far...

Understand that
muon is a steepest descent under spectral norm

and why it’s a good idea.

II. Steepest Descent

Gradient-based optimizers are basically...

Optimization Algorithms

1. Taylor Expansion on the loss function

L(w+Δw) L(w) + gTΔw ½ ΔwTHΔw= + + ...

2. Approximate high-order terms

L(w+Δw) L(w) + gTΔw D(w,w+Δw)≈ +

3. Minimize (find Δw that minimize RHS)

Different higher-order modeling = Different optimization

Optimization Algorithms

ex1) Euclidean Norm → Gradient Descent (1st order method)

L(w) + gTΔw ½ λ*||Δw||2
2≈ +

L(w+Δw) L(w) + gTΔw ½ ΔwTHΔw= + + ...

Different higher-order modeling = Different optimization

Optimization Algorithms

ex1) Euclidean Norm → Gradient Descent (1st order method)

L(w) + gTΔw ½ λ*||Δw||2
2≈ +

ex2) Hessian Matrix → Newton’s Method (2nd order)

L(w) + gTΔw ½ ΔwTHΔw≈ +

L(w+Δw) L(w) + gTΔw ½ ΔwTHΔw= + + ...

Different higher-order modeling = Different optimization

Optimization Algorithms

ex1) Euclidean Norm → Gradient Descent (1st order method)

L(w) + gTΔw ½ λ*||Δw||2
2≈ +

ex2) Hessian Matrix → Newton’s Method (2nd order)

L(w) + gTΔw ½ ΔwTHΔw≈ +

ex3) Some distance function D on output f (e.g., TRPO: KL divergence)
→ Natural Gradient Descent (2nd order)

L(w) + gTΔw D(f,f+Δf)≈ +

L(w+Δw) L(w) + gTΔw ½ ΔwTHΔw= + + ...

L(w) + gTΔw ½ ΔwT (∇wfT ∇𝑓
2D ∇wf)Δw≈ +

A lot to argue about which is better, but let’s just say that...

Optimization Algorithms

...and we will see that these all use the same formula as SGD

Same Steepest Descent, Different Norms

L(w+Δw) L(w) + gTΔw= + ½ λ*||Δw||2
2

L(w+Δw) L(w) + gTΔw= + ½ λ*||Δw||∞2

L(w+Δw) L(w) + gTΔw= + ½ λ*||Δw||ℓ2→ℓ2
2

L(w+Δw) L(w) + gTΔw= + ½ λ*||Δw||ℓ2→ℓ2
2

...but with different norms!

Same Steepest Descent, Different Norms

Always has been

Wait, it’s all just ?½ λ*||Δw||

SGD
Adam

Shampoo

Muon Us mortals

Jeremy
Bernstein

The first-order method:

Same Steepest Descent, Different Norms

L(w) + gTΔw ½ λ*||Δw||2≤ +

L(w+Δw) L(w) + gTΔw ½ ΔwTHΔw= + + ...

 Old Optimizer, New Norm: An Anthology., Bernstein & Newhouse.
Note: You can actually derive the ½ λ* || Δ w || under Lipschitz condition on the gradient (which is indeed related to sharpness); see Appendix B.1 and B.3.

Sharpness parameter Square of any norm
e.g., L2 → Gradient descent

This is also called a steepest descent

Simple intuition: λ decides step size, || · || decides direction

Same Steepest Descent, Different Norms

Step size Step direction
1. Draw a unit ball of selected norm
2. Find the direction that changes L the most

If the landscape is sharp, take smaller steps

Same Steepest Descent, Different Norms

also called a duality map on g
Step size Step direction

Extra intuition: gradients are always ‘dualized’

which uses dual norm on g

 Modular Duality in Deep Learning., Bernstein & Newhouse.

Recall: g is an operator on w, so any operation on g must depend on w (or t).

Same Steepest Descent, Different Norms
Example: Vanilla Gradient Descent is steepest under ℓ2

argmax
||x||2 =1

gTx
||g||2

†

λ

||g||2
λ

=
||g||2

g

λ
= g1

argmax
||x||2 =1

gTx =
||g||2

g
||g||2

† ≜ sup
||x||2 =1

gTx = ||g||2

λ
g- 1wt+1 = wt

Same Steepest Descent, Different Norms
Example: Adam without EMA is steepest under ℓ∞

Adam’s update rule:

Adam without EMA (𝛽1 = 𝛽2 = 0) is a sign descent:

Note: Same applies to any sign descent algorithms such as RMSProp and Lion.
Note: “EMA can then be thought of as “smoothing out” the algorithm, or making it more robust to mini-batch noise, although nailing down the precise role of EMA is perhaps still an open problem”

 Old Optimizer, New Norm: An Anthology., Bernstein & Newhouse.

Same Steepest Descent, Different Norms
Example: Adam without EMA is steepest under ℓ∞

argmax
||x||∞ =1

gTx sign(g)=||g||∞
† ≜ sup

||x||∞ =1
gTx = ||g||1

argmax
||x||∞ =1

gTx
||g||∞

†

λ

||g||1

λ
= sign(g)

wt+1 = wt
||g||1

λ
- sign(g)

Summary
The first-order method:

L(w) + gTΔw ½ λ*||Δw||2≤ +

L(w+Δw) L(w) + gTΔw ½ ΔwTHΔw= + + ...

Square of any norm

and the choice of norm results in a completely different algorithm!

Next Question
Which norm should be use?

ℓ1 ,ℓ2 , ... , ℓ∞ ?

Hold on...

w is not a vector, they are matrices with structure...

Can’t we use matrix norms here?

So far...

Understand that
muon is a steepest descent under spectral norm

and why it’s a good idea.

III. Modular Steepest Descent

flatten

Norms Should be Defined Layerwise
What we’ve been doing so far:

W1

W2

W3

x

L

f(x) w ∈ℜn

Flattening completely erases the structure of the network!

∙ Number of layers (Depth)

∙ Size of each layer (layerwise width)

∙ Layer type (CNN, MLP, Attention, ...)

∙ Weights are matrices, not vectors!

||w||

∙ Weights are operators, not just matrices!

Norms Should be Defined Layerwise
What we should be doing:

W1

W2

W3

x

L

f(x)

||W1||[1]

||W2||[2]

||W3||[3]

1. Measure each matrix individually: || ∙ ||[1] ,|| ∙ ||[2] , ... , || ∙ ||[L]

2. Get total norm of the network ||w||by weighted max.

3. We can go back to the same steepest descent.

Norms Should be Defined Layerwise
What we should be doing:

W1

W2

W3

L

f(x)

||W1||[1]

||W2||[2]

||W3||[3]

1. Measure each matrix individually: || ∙ ||[1] ,|| ∙ ||[2] , ... , || ∙ ||[L]

2. Get total norm of the network ||w||by weighted max.

3. We can go back to the same steepest descent.

Note: The weights s seems to connect to ‘sensitivity’ in later works (for now they’re just set to 1).
Note: The max operation kinda makes sense when you actually derive the results (although I’m still unsure of the intuition). See Appendix C.

 Scalable Optimization in the Modular Norm., Large et al.
 Modular Duality in Deep Learning., Bernstein & Newhouse.

||w||2 ≜max s𝑙
2 ||W𝑙||[𝑙]

2

Norms Should be Defined Layerwise
What we should be doing:

W1

W2

W3

L

f(x)

||W1||[1]

||W2||[2]

||W3||[3]

1. Measure each matrix individually: || ∙ ||[1] ,|| ∙ ||[2] , ... , || ∙ ||[L]

2. Get total norm of the network ||w||by weighted max.

3. We can go back to the same steepest descent.

Steepest Descent

Modular Steepest Descent

x

||w||2 ≜max s𝑙
2 ||W𝑙||[𝑙]

2

Norms Should be Defined Layerwise
No big difference other than “is it layerwise or not”.

Steepest Descent Modular Steepest Descent

Norm on flattened vector Norm on each matrix

Can use only vector norm Can use matrix norm

All layers are jointly solved Each layer is individually solved

Δ𝑤 = −
| 𝑔 |†

𝜆
argmax
||𝑡||=1

𝑔𝑇𝑡 Δ𝑊𝑖 = −
𝜂

𝑠𝑙
argmax
||𝑇𝑖||=1

< 𝐺𝑖 , 𝑇𝑖 >

Now the question is: “Which matrix norm do we use?”
Note: For the full solution and derivation of modular steepest descent, see Appendix C.

Which Norm Should We Use?
We need to first ask: what are the matrices doing?

W1 W2 W3x h1 h2 f(x)
ℜin ℜd ℜd ℜout

They are linear operators that map (each of their) input space to output space!

Which Norm Should We Use?
We need to first ask: what are the matrices doing?

W2 W3x h1 h2 f(x)
ℜin ℜd ℜd ℜout

They are linear operators that map (each of their) input space to output space!

W1

sup
x≠0

||Ax||β
||x||α

||A||α→ β ≜
sup

||x||α=1 ||Ax||β=

Which means their norms are induced by the norm of the features they work on!

Recall:

||W1||x →h 1 ||W2||h 1 →h 2 ||W3||h 2 →y

Which Norm Should We Use?
We need to first ask: what are the matrices doing?

W2 W3x h1 h2 f(x)
ℜin ℜd ℜd ℜout

They are linear operators that map (each of their) input space to output space!

W1

||W1||x →h 1 ||W2||h 1 →h 2 ||W3||h 2 →y

Which means their norms are induced by the norm of the features they work on!

Now the question becomes: “Which feature norm do we use?”

Which Feature Norm Do We Use?
Example: Adam without EMA is steepest under max ℓ1→ℓ∞ norm.

Interestingly, Adam can also be thought as using ℓ1→ℓ∞ norm on every weight matrix.

Then, ℓ∞ is (coincidentally) the maximum of ℓ1→ℓ∞ norms (a.k.a. max-of-max norm)!

sup
x≠0

||Ax||∞

||x||1
||A||ℓ1→ℓ∞

≜ = max
i , j

|A i , j |sup
||x||1=1 ||Ax||∞ =

First, the ℓ1→ℓ∞ norm is simply the largest entry of the matrix.

*Maximized when x=one-hot(j) where max entry is at A i, j

Which Feature Norm Do We Use?
Example: Adam without EMA is steepest under max ℓ1→ℓ∞ norm.

Is ℓ1→ℓ∞ natural? Probably not...

Still, they ARE doing modular steepest descent, which may explain why they work so well.

 Old Optimizer, New Norm: An Anthology., Bernstein & Newhouse.

Still still, we can probably do better than this!

Summary
Norms should be measured layer-by-layer

Steepest Descent Modular Steepest Descent

Δ𝑤 = −
| 𝑔 |†

𝜆
argmax
||𝑡||=1

𝑔𝑇𝑡 Δ𝑊𝑖 = −
𝜂

𝑠𝑙
argmax
||𝑇𝑖||=1

< 𝐺𝑖 , 𝑇𝑖 >

Question: Which matrix norm should we use?

New Question: Which feature norm (α , β) then?
Answer: Matrices in NNs are operators, so it should be an operator norm (α→ β).

sup
x≠0

||Ax||β
||x||α

||A||α→ β ≜
sup

||x||α=1 ||Ax||β=

So far...

Understand that
muon is a steepest descent under modular norm

and why it’s a good idea.

IV. Deriving Muon

Which Feature Norm Does Muon Use?
Muon asks: which feature norm are we using?

Since we love LayerNorm sooo much, we’re using ℓ2 norm* almost everywhere!

Note: Technically it’s ℓ RMS which scales ℓ 2 by sqrt(dim), so it affects step size (but not the direction). This opens a whole another story; see spectral condition and muP.

W2 W3x h1 h2 f(x)
ℜin ℜd ℜd ℜout

W1

||W1||x →ℓ2
||W2||ℓ2→ℓ2

||W3||ℓ2 →y

So except for input and output, Muon wants to follow exactly that!

We can define input and output norms, but let’s only think about hidden features.
In fact, Muon just uses Adam on input and output layers.

Muon
Muon w/o momentum is steepest under ℓ2→ℓ2 norm

argmax <G,T>
||T||ℓ2→ℓ2=1 UVT

1. Compute gradient
2. Update momentum
3. Orthogonalize
4. Update

𝐺𝑡 = ∇𝜃𝐿

𝐵𝑡 = 𝜇𝐵𝑡−1 + 𝐺𝑡
𝐵𝑡 = 𝑈Σ𝑉𝑇

→ 𝑂𝑡 = 𝑈𝑉𝑇

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑂𝑡

Δ𝑊𝑖 = −
𝜂

𝑠𝑙
argmax
||𝑇𝑖||=1

< 𝐺𝑖 , 𝑇𝑖 >

=

Note: I intentionally hid the dual norm once we moved to matrix norms to only focus on the orthogonalization part. See Appendix C.3 for full derivation.

Muon
Muon w/o momentum is steepest under ℓ2→ℓ2 norm

max
| 𝑋 |𝑙2→𝑙2=1

< 𝐺, 𝑋 > = max
| 𝑋 |𝑙2→𝑙2=1

𝑡𝑟(𝐺Τ𝑋)

= max
| 𝑋 |𝑙2→𝑙2=1

𝑡𝑟(𝑉Σ𝑈Τ𝑋)

= max
| 𝑋 |𝑙2→𝑙2=1

𝑡𝑟(Σ𝑈Τ𝑋𝑉)

= 𝑡𝑟(Σ𝑈𝑇𝑈𝑉𝑇𝑉)

= 𝑡𝑟(Σ)

Maximized by: 𝑋 = 𝑈𝑉𝑇

(Spectral decomposition 𝐺 = 𝑈Σ𝑉Τ)

(Cycle property of trace: 𝑡𝑟 𝐴𝐵𝐶 = 𝑡𝑟 𝐵𝐶𝐴 = 𝑡𝑟(𝐶𝐴𝐵))

argmax <G,T>
||T||ℓ2→ℓ2=1 UVT= Δ𝑊𝑖 = −

𝜂

𝑠𝑙
argmax
||𝑇𝑖||=1

< 𝐺𝑖 , 𝑇𝑖 >

Orthogonalization via Newton-Schulz
Should we perform SVD every time we update?

1. Compute gradient
2. Update momentum
3. Orthogonalize
4. Update

𝐺𝑡 = ∇𝜃𝐿

𝐵𝑡 = 𝜇𝐵𝑡−1 + 𝐺𝑡
𝐵𝑡 = 𝑈Σ𝑉𝑇

→ 𝑂𝑡 = 𝑈𝑉𝑇

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑂𝑡

People have found a much faster way to find UVT without performing SVD!

The Newton-Schulz iteration:

𝑋𝑡+1 =
2

3
𝑋𝑡 −

1

2
𝑋𝑡𝑋𝑡

𝑇𝑋𝑡

...that’s it. 𝑋 gets closer to orthogonal after every iter.

Orthogonalization via Newton-Schulz
I can’t believe it’s that easy!

Note: Muon uses higher polynomials with better coefficients in practice, but they basically do the same thing but faster.
Note: The 0 ≤ 𝜎 ≤ 3 condition can be satisfied by normalizing the matrix by its Frobenius norm first (which doesn’t affect the final output).

𝑋𝑡+1 =
2

3
𝑋𝑡 −

1

2
𝑋𝑡𝑋𝑡

𝑇𝑋𝑡

=
2

3
𝑈Σ𝑉𝑇 −

1

2
𝑈Σ𝑉𝑇 ⋅ 𝑉Σ𝑇𝑈𝑇 ⋅ 𝑈Σ𝑉𝑇

=
2

3
𝑈Σ𝑉𝑇 −

1

2
𝑈Σ3𝑉𝑇

= 𝑈
2

3
Σ −

1

2
Σ3 𝑉𝑇

3

3

𝑓 𝜎 on each entry

𝑓(𝜎) 𝑓𝑓𝑓𝑓𝑓(𝜎)

As long as 0 ≤ 𝜎 ≤ 3, every iteration gets 𝜎 closer to 1!

So far...

Understand that
muon is a steepest descent under spectral norm

and why it’s a good idea.

V. Unfinished Business

Unanswered Questions
(And Where to Find the Answers)

Q1. Why is spectral descent a good idea?
A1. This blog (3min): https://jeremybernste.in/writing/deriving-muon

tl;dr – Because it takes the largest improvement within a safe range.

Also recommended: Spectral Condition / Appendix J of Tensor Programs V

https://jeremybernste.in/writing/deriving-muon
https://arxiv.org/abs/2310.17813v2
https://arxiv.org/abs/2203.03466

Unanswered Questions
(And Where to Find the Answers)

Q2. Why should we use L2 or RMS norm?
A2. We don’t need to. There is little known about what is the best norm.

(The modular norm paper came out late 2024, sooo...)
In fact, there are words that EMA allows optimizers like Adam or
Shampoo to adjust to the ‘right’ norm for each layer.

https://x.com/leloykun/status/1847919153589735705

https://x.com/leloykun/status/1847919153589735705

Unanswered Questions
(And Where to Find the Answers)

Q3. What will happen in the future?
A3. Bernstein is expanding on the idea of modular optimization.

He believes that every layer can be designed like lego blocks,
which will make it easier to understand what’s going on inside the NNs.

https://jeremybernste.in/writing/deriving-muon Conclusion

 Scalable Optimization in the Modular Norm., Large et al.

 Modular Duality in Deep Learning., Bernstein, Newhouse.

https://docs.modula.systems/

https://jeremybernste.in/writing/deriving-muon
https://docs.modula.systems/

Unanswered Questions
(And Where to Find the Answers)

Q4. Has Muon been applied to larger LLMs?
A4. Yes.

 Muon is Scalable for LLM Training., Liu et al.

Q5. Has Muon been applied to RL?
A5. Not yet. Our attempt while building V-Simba was unsuccessful.

Could not outperform Adam, but I may not have been cautious enough
with the implementation details (e.g., on convolution).

 Modular Duality in Deep Learning., Bernstein, Newhouse.
https://x.com/jxbz/status/1846188906733044029
https://x.com/tianylin/status/1896542545557262606

https://x.com/jxbz/status/1846188906733044029
https://x.com/tianylin/status/1896542545557262606

	슬라이드 1: Modular Optimization The Great Mind of Jeremy Bernstein
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63
	슬라이드 64
	슬라이드 65
	슬라이드 66
	슬라이드 67

