
Muon Appendix
A. Some Norms are Induced by Others

A.1. Operator Norm (Induced Norm)
Consider a linear transformation ﻿. How do we measure the ‘size’ of ﻿?

Here, it’s important to note that ﻿ is an operator on ﻿.

In other words, ﻿ is defined on what it does to ﻿, so the norm of ﻿ should be defined by how 
much it changes ﻿.

Given that input ﻿ is measured by ﻿ and output ﻿ is measured by ﻿, the norm of ﻿ is 
defined by the maximum change of norm between the input and output (in their own norms):

We call the norm ﻿ the “operator norm” or the “ ﻿-to- ﻿ induced norm”.

For example, if both input and output use ﻿ norm, then the induced norm is the Spectral norm (i.e., 
the largest singular value of ﻿). Recall what eigenvalues/singular values meant!

A.2. Dual Norm
Dual norm is a special case of operator norm where ﻿ is a vector rather than a matrix.

Consider a linear transformation ﻿. How do we measure the size of ﻿?

Again, note that ﻿ is an operator on ﻿. So even though ﻿ has the same shape as ﻿, they live in a 
completely different space. Specifically, we call the space of ﻿ the primal space (input space), 
and ﻿ the dual space (operator space).

And following the same flow as above, the norm of ﻿ is defined by how much it changes ﻿.

Given that input ﻿ is measured by ﻿, the norm of ﻿ is defined by:

We call the norm ﻿ a “dual norm to ﻿”.

For example: a dual norm of ﻿ norm is the ﻿ norm, where ﻿.

Notably, the dual of ﻿ is also ﻿. This means that if we use ﻿ norm, the dual space is identical 
to the primal space. This is exactly the case when we use gradient descent!
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B. Steepest Descent Derivations

B.1. Steepest Descent Problem
A steepest descent problem has three inputs:

gradient ﻿

sharpness parameter ﻿

norm ﻿

And outputs the steepest descent direction (and step size) under these conditions.

We can actually derive this problem using a Lipschitz condition (which connects to sharpness).

Say we want to minimize ﻿, a closed convex function with Lipschitz condition on its gradient:

…where ﻿ and ﻿ are dual norms (see Appendix A).

Let’s start by drawing a line between arbitrary points ﻿.

Note that ﻿.

Then:
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First equation can be understood easier with single variable case

﻿

﻿

﻿

Also, ﻿ for vectors, ﻿ for matrices (which is also just elementwise 
multiplication and sum).

By Holder’s inequality ( ﻿, where ﻿ are dual ):

Where second to third was from the Lipschitz conditioned we started with.

Plugging this back, we get:

We thus end up with the steepest descent problem: 

Or alternatively by letting ﻿,

Which becomes a minimization problem:

The constant ﻿ connects to ﻿, which is natural since ﻿ tells us how fast the gradient changes 
(i.e., sharpness)! We will later see in B.3. that ﻿ actually represents the norm of the Hessian:

﻿.
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B.2. Solution to Steepest Descent Problem
Here we’ll fall back to the problem stated in Old Optimizer, New Norm: An Anthology.
The derivation explained here is also directly from AppendixB.1. of that paper.

Decouple ﻿ to direction and step size: ﻿

Because ﻿:

By definition of dual norm:

Deriving ﻿

From (2): ﻿

From (3): ﻿ (solving quadratic eq)

Thus, ﻿

Interestingly, the step size is made by the dual norm: ﻿,
but the direction is actually made identically but in argmax:  

﻿

So not only the norm is being dualized, the direction itself is also being dualized!

In the later paper of Jeremy Bernstein, this operation will be called the ﻿ function.
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Which does not add another knowledge, but makes it clear that gradient live in a dual space, and 
that they must be translated back to primal space (parameter space) to behave properly.

Obviously, the direction is mainly controlled by ﻿, and the size mainly by ﻿.

For how ﻿ is decided, I have no clear understanding but it may be answered by the sensitivity 
parameter they define later [1], [2].

B.3. Connection to Hessian
Start with univariate function ﻿:

Replace ﻿ with multivariate gradient function , of which input is a parameter space 
with norm ﻿ and output is a gradient (dual) space with dual norm ﻿.

Take their norms:
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Notice here, that this looks quite similar to the Lipschitz condition we stated before!

So this means that the norm of the Hessian is bounded by the Lipschitz constant:

For example, if we are using ﻿ norm on the parameter, its dual space is also ﻿. Then, the induced 
norm ﻿ is a spectral norm, which takes the maximum singular value of the matrix. It’s well 
known that the maximum singular value of an Hessian represents the sharpness of the loss 
landscape around current point ﻿!

Additionally, notice that for high ﻿ (or ﻿), the step size proportionally decreases, which is natural: 
you do have to take smaller steps when the landscape is sharp!

C. Modular Steepest Descent

C.1. Generalizing to Modular Norm
Previous definition of steepest descent was defined on vectors ﻿,
where 

﻿ is the total number of parameters in the model (i.e., all weights flattened).

This disregards the structure of the architecture: that each layer has the parameters.

In the most general form, each layer can use different types of norm:

Each layer has parameters ﻿

with scalar coefficients ﻿   (honestly not sure why this popped up)

and with norms ﻿

Then the corresponding steepest descent problem is given by:

Note

﻿ is the Frobenius inner product, which is a fancy name for flatten-then-dot-product.

This means that we can alternatively use ﻿.

﻿ and ﻿ are always the same shape of ﻿

Same as before, this can be directly solved given ﻿:
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Funnily enough, the max operation in the descent problem didn’t matter; the step size ﻿ will be a 
weighted sum of the dual norms across every layer (see derivation).

C.2. Solution to Modular Steepest Descent Problem
Similar to the first-order steepest descent.

Decouple ﻿ to direction and step size: ﻿

Because ﻿:

By definition of dual norm:

Here, minimum is only reached when ﻿

To see that, let’s call that certain value ﻿.

If there one ﻿ such that ﻿, we can simply increase ﻿ until ﻿, which minimizes the left 
term without changing the max term on the right! As a result, this becomes the problem of deciding 

﻿:

Deriving ﻿

﻿

﻿, where ﻿

Thus, ﻿

C.3. Steepest Descent Under Spectral Norm
The steepest descent under spectral norm:
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Then the solution is:

Let’s try deriving this.

We start with the general solution:

Above problem sets ﻿, for all ﻿.

Also, we can use trace to compute the Frobenius dot product:

Given the results first, we need to show that:

1. ﻿

2. ﻿

1. Dual-norm of spectral norm

We’ll use the rank-1 SVD decomposition: ﻿

Using the cycle property of trace (i.e. ﻿):

Since ﻿, the SVD decomposition of ﻿ (all ﻿)

This means that the maximum is obtained with ﻿, which cancels everything out:
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2. Argmax of trace

It is already shown in #1 that ﻿ maximizes ﻿ when ﻿ is constrained to spectral 
norm.

= ​ tr(Σ)
∣∣T ∣∣ ​=1ℓ ​→ℓ ​2 2

max

T = UV T tr(G T )T T
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