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A.

Some Norms are Induced by Others

A. Operator Norm (Induced Norm)

. . . A .
Consider a linear transformation £ — Azx. How do we measure the ‘size’ of A?
Here, it's important to note that A is an operator on .

In other words, A is defined on what it does to x, so the norm of A should be defined by how
much it changes x.

Given that input z is measured by || - ||, and output Az is measured by || - ||, the norm of A is
defined by the maximum change of norm between the input and output (in their own norms):

A
Al 2 sup L2
P el
We call the norm || - || the “operator norm” or the “a-to- induced norm”.

For example, if both input and output use £5 norm, then the induced norm is the Spectral norm (i.e.,
the largest singular value of A). Recall what eigenvalues/singular values meant!

A
Al e, 2 sup AZE _ o
P el

A.2. Dual Norm
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Dual norm is a special case of operator norm where A is a vector rather than a matrix.
. . . a .
Consider a linear transformation z — a” x. How do we measure the size of a?

Again, note that a is an operator on . So even though a has the same shape as z, they livein a
completely different space. Specifically, we call the space of x the primal space (input space),
and a the dual space (operator space).

And following the same flow as above, the norm of a is defined by how much it changes .
Given that input z is measured by || - ||, the norm of a is defined by:

aT:z:

la||f, £ sup
20 |||

We call the norm ||a/|} a “dual norm to ",
For example: a dual norm of £, norm is the £, norm, where 1/p 4+ 1/q = 1.

o Notably, the dual of {5 is also £5. This means that if we use £5 norm, the dual space is identical
to the primal space. This is exactly the case when we use gradient descent!



B. Steepest Descent Derivations

B.1. Steepest Descent Problem
o A steepest descent problem has three inputs:
o gradient g
o sharpness parameter A
o norm || -]

» And outputs the steepest descent direction (and step size) under these conditions.

Proposition 1 (Steepest descent) For any g € R" thought of as “the gradient” and any

A = 0 thought of as “the sharpness”, and for any norm ||-| : R* — R with dual norm |-||':
A f
arg min [gTA'w + 2 |Aw|?| = _lal, argmaxg ' t. (1)
AweRn 2 A =1

o We can actually derive this problem using a Lipschitz condition (which connects to sharpness).

 Say we want to minimize F'(z), a closed convex function with Lipschitz condition on its gradient:
IVE(z) = VEW)lly < Lyllz = yll

e ..where p and q are dual norms (see Appendix A).

» Let's start by drawing a line between arbitrary points x, y.
Let g(t) = F(z + t(y — z)), where ¢t € [0, 1]

« Note that g(0) = F(z),g(1) = F(y).
e Then:

Fw) - FE
— /0 (VF(z+ t(y — o)),y — a)dt
- /0 VF(@ 4y — 7)) + VE() - VE(),y — o)t
_ /OIWF(x), y— z)dt + /01<VF(:1: +Hy—2)) — VF(2),y — o)dt
— (VF(z),y—a) + /1(VF(:1: Hy—2)) — VF(2),y — o)t

9
<(VF(z),y—z)+ i (VF(z +t(y —z)) — VF(z),y — z)|dt
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v First equation can be understood easier with single variable case

Fly) = f@)+ [ f( t)dt
fly) = +fo (y—x))dt - (y — )
fly) - = [y fl(z+tly —2))dt - (y — )

* Also, <a, b) = a”'b for vectors, (A, B) = tr(AB) for matrices (which is also just elementwise
multiplication and sum).

« By Holder's inequality ( [(a, b)| < ||a||y||b||, Where p, g are dual ):
(VF(z+t(y —z)) - VF(z),y — )|
<|[VF(z +t(y —z)) = VF()ll - [ly — |,
< Lylle + tly = 2) = 2llp - [ly = 2|,
=Ly-t-[ly—zlf,

* Where second to third was from the Lipschitz conditioned we started with.

¢ Plugging this back, we get:

| Fly) - F)
< (VF(z),y— ) + / (VF(z+t(y — 2)) — VF(z),y — 2)|dt

1
< (VF(@)y—a)+ [ L-t-|ly - o|ids
0
1
< (VF(@)y o)+ Lylly o [ e
L, 02
< (VF(2),y — ) + Ly — 2|
o We thus end up with the steepest descent problem:
Ly 2
F(y) < F(x) + (VF(z),y — ) + —[ly — ||
« Or alternatively by letting y = = + Az,
L
F(z+ A) < F(z) + (VF(2), Az) + || Aal}
¢ Which becomes a minimization problem:

Az = — arg max [(VF(w) Azx) + —p||Ax|| ]
Az

« The constant L, connects to A, which is natural since L, tells us how fast the gradient changes
(i.e., sharpness)! We will later see in B.3. that L,, actually represents the norm of the Hessian:
[V2F (2)|[psg < Ly, Ve
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B.2. Solution to Steepest Descent Problem

o Here we'll fall back to the problem stated in Old Optimizer, New Norm: An Anthology.
The derivation explained here is also directly from AppendixB.1. of that paper.

Proposition 1 (Steepest descent) For any g € R™ thought of as “the gradient” and any

A = 0 thought of as “the sharpness”, and for any norm |-| : R® — R with dual norm |-||:
A f
arg min [gTAw + = ]Aw\g] = _lgl" -argmaxg ' t. (1)
AweRn 2 A It]=1

 Decouple Aw to direction and step size: Aw =c-t,c € R,t € R",¢ > 0,||t|]| =1

A A
. T 2 . . T 2 2
min Aw + —||Aw ] =min min [c~ -t4+ =c||t ]
AweRr [g 2 l l >0 teRm:||t]|=1 I 2 [l

 Because ||t|| = 1:
= min [c- min [g7t] + écﬂ
>0 teRn:|Jt]|=1 2

o By definition of dual norm:

A
—min | — - llallf - 22
rgggl[ c-|lg|" + C}

2
o Deriving Aw
o From (2): ¢ = argmin_;[g7t] = — arg max_;[g”¢]
o From (3):c = w (solving quadratic eq)
o Thus, Aw =c-t = —@ arg maxjj_ g’'t

« Interestingly, the step size is made by the dual norm: ||g||" = min;_1[g"t],
but the direction is actually made identically but in argmax:
—argmax ;97|

e So not only the norm is being dualized, the direction itself is also being dualized!

« Inthe later paper of Jeremy Bernstein, this operation will be called the dualize function.
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Definition 1 (Dual norm). Given a norm |-| : R* — R, the dual norm |-|T of a vector g € R™ is given by:

.= max gt 5
loll i~ _max_g 6
Definition 2 (Duality map based on a norm). Given a norm |-| : R" — R, we consider the duality map:
dualize|.| g := argmax g't, (6)
teR™:| =1

where, if the argmax is not unique, dualize|.| returns any maximizer.

« Which does not add another knowledge, but makes it clear that gradient live in a dual space, and
that they must be translated back to primal space (parameter space) to behave properly.

« Obviously, the direction is mainly controlled by || - ||, and the size mainly by A.

a) varying sharpness i b) varying choice of norm Il

« For how ) is decided, | have no clear understanding but it may be answered by the sensitivity
parameter they define later [1], [2].

B.3. Connection to Hessian

o Start with univariate function R — R:
fo) = 1)+ [ Fa
f(v) = f(z) + /0 fe+t(y — @)t (y — )
f() — f(z) = /0 fe+t(y — )t - (y — )

» Replace f with multivariate gradient function VF' : R®™ — R", of which input is a parameter space
with norm || - ||, and output is a gradient (dual) space with dual norm || - ||,.

VF(y) — VF(z) = /0 V2 F(z +t(y —z))dt - (y — z)

e Take their norms:

IVF(y) — VF(2)l; = /0 IV2F (2 + t(y — 2))llp-sqdt - [ly — @I,
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C.

Notice here, that this looks quite similar to the Lipschitz condition we stated before!
IVF(z) = VE(y)llg < Lyllz — yll,
So this means that the norm of the Hessian is bounded by the Lipschitz constant:
[V2F()|lpog < Ly, Ve

For example, if we are using £5 norm on the parameter, its dual space is also £5. Then, the induced
norm £y — £ is a spectral norm, which takes the maximum singular value of the matrix. It's well
known that the maximum singular value of an Hessian represents the sharpness of the loss
landscape around current point z!

Additionally, notice that for high L, (or ), the step size proportionally decreases, which is natural:
you do have to take smaller steps when the landscape is sharp!

Modular Steepest Descent

C.1. Generalizing to Modular Norm
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Previous definition of steepest descent was defined on vectors g, Aw € R”,
where
n is the total number of parameters in the model (i.e., all weights flattened).

This disregards the structure of the architecture: that each layer has the parameters.

In the most general form, each layer can use different types of norm:

o Each layer has parameters Wy, --- , W[,
o with scalar coefficients s1,- -+ ,s, > 0 (honestly not sure why this popped up)
o and withnorms || - [|1,- -+, || - ||z

Then the corresponding steepest descent problem is given by:
L

A
arg min [Z(Gl, AW)) + = max S?HAW}Hﬂ
AW, AWy L 2 =1

Note
o (-,-) is the Frobenius inner product, which is a fancy name for flatten-then-dot-product.
o This means that we can alternatively use tr(GT W) = (G, AW}).
o W; and G; are always the same shape of R%u*din

Same as before, this can be directly solved given {W,, s;, || - |[i }i=1...L:



L

1 1
AW, = _n argmax(G,T;), where n = — Z —||Gk||£
SU T =1 A sk

« Funnily enough, the max operation in the descent problem didn't matter; the step size 1 will be a
weighted sum of the dual norms across every layer (see derivation).
C.2. Solution to Modular Steepest Descent Problem
« Similar to the first-order steepest descent.

 Decouple AW, to direction and step size: AW, = ¢; - T;,¢ > 0, ||T1||; = 1

L
AL AL
arg min [ G, AW, + Z max s? AW, 2} = ar mln[ ¢ min (G}, T; + Z maxs? q
AWl,g---,AWL ;< ) o e al I wg’q n Z szf ) o e al

Because ||T}||; = 1:

L
. AL
arg min E ¢; min (G),T}) + = max sic;
ety yer>0 [1T[|:=1 2 =1
=1
o By definition of dual norm:
L
: AL 99
argmin | — E cl||G'lHl + 5 max sy
Cly"'7CLZO =1 I=
e Here, minimum is only reached when sic; = s9cs = -+ = syCf,

» To see that, let's call that certain value 7.

o If there one 7 such that s;c; < 1, we can simply increase c; until s;c; = 7, which minimizes the left
term without changing the max term on the right! As a result, this becomes the problem of deciding

n:
L

. A
arg min [— chHGlH; + 5772}

Cly =+ ,CL> -1

« Deriving AW,
o Ty = argminy = (G1, Th) = — arg max g1 (G1, T)
L
o c¢= 1, wheren = O iHGkHL

o Thus, AW, =¢;- T} = —;Z— arg max(Gy, T})

C.3. Steepest Descent Under Spectral Norm

+ The steepest descent under spectral norm:
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L
) AL
argmin | 3°(Gy, AW + 2 mhx || AW,
AWy, AW E S 2 1=1

e Then the solution is:

L
1
— T —
AW, =n-U,V;" ,wheren = X lgl tr(%)

o Let's try deriving this.

o We start with the general solution:

L
1 1
— _Q argmax(Gl,ﬂ%Where n = X Z QHG’CHL
k=1

AW,
51 ||Tilhi=1

 Above problemsets s; = 1, || - ||; = || - ||e,—¢,, for all L.

e Also, we can use trace to compute the Frobenius dot product:
L

1
,where n = + SNGE,

AW, = —n - arg max tr(G T))
=1

172l =1

¢ Given the results first, we need to show that:

1G], = tr(S)
2. arg maxp, _; tr(G{ T}) = UV

1. Dual-norm of spectral norm
« We'll use the rank-1SVD decomposition: G = USVT

IGIIE e,
= max tr(G'T)

HTHfgﬂlz:l

= max tr(VXU'T)

HT|‘€2‘>[2:1
« Using the cycle property of trace (i.e. tr(ABC) = tr(BCA) = tr(CAB)):

= max tr(ZUTTV)

HTleﬁlzzl

« Since ||T||¢, ¢, = 1, the SVD decomposition of T = U'V'T (all o = 1)

« This means that the maximum is obtained with 7' = UV, which cancels everything out
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= max tr(X%)

HTH12~>12:1

2. Argmax of trace

« ltis already shown in #1that T = UVT maximizes tr(GTT) when T is constrained to spectral
norm.
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